首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-21
49
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)一[*](取其中一个),得 [*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0 (x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
[*],则C=4一a.因此,f(x)=[*]ax
2
+(4一a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*].又f’(x)=3ax+4一a,由此易知一8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[*]ax
2
+(4—a)x]
2
dx =π∫
0
1
[[*]x
4
+x
2
—3x
3
)a
2
+(12x
3
—8x
2
)a+16x
2
]dx=π([*]). (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=一5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/epg4777K
0
考研数学一
相关试题推荐
已知随机变量X的概率分布P(X=K)=ae-λ,其中λ>0,k=1,2,…,则E(X)为().
设f(0)=g(0),f′(0)=g′(0),f″(x)<g″(x)(当x>0时),证明当x>0时,f(x)<g(x).
设S为圆锥面z=被曲面x2+y2=2ax(a>0)所截下部分,则曲面积分I=(xy+yz+zx)dS=__________.
直线L1:②().
求椭球面x2+2y2+z2=22上平行于平面x—y+2z=0的切平面方程.
求方程组的通解,并求满足x2=x3的全部解.
微分方程y″一y′=ex+1的一个特解具有的形式为().
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
随机试题
在解决问题的过程中,对解答问题有启示作用的相类似的事物或现象是()
《容忍与自由》的中心论点是()
下列关于脂肪动员的叙述中,不正确的是
脑复苏中首选的脱水药为
会阴部手术时,皮肤消毒下列哪项忌用
适用于含有挥发性成分的贵重药品的水分测定法为
分配数列各组变量值不变,每组次数均减少40%,加权算术平均数的数值()。
在管理信息系统开发过程中的重点原则是()。
根据《专利法》规定,下列情形可以实施普通强制许可的是()。
当______成立时,称X→Y为平凡的函数依赖。
最新回复
(
0
)