首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-21
67
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)一[*](取其中一个),得 [*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0 (x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
[*],则C=4一a.因此,f(x)=[*]ax
2
+(4一a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*].又f’(x)=3ax+4一a,由此易知一8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[*]ax
2
+(4—a)x]
2
dx =π∫
0
1
[[*]x
4
+x
2
—3x
3
)a
2
+(12x
3
—8x
2
)a+16x
2
]dx=π([*]). (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=一5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/epg4777K
0
考研数学一
相关试题推荐
设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x)≤0.证明函数F(x)=f(t)dt在(a,b)内也有F′(x)≤0.
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
计算曲面积分4zxdydz-2zydzdx+(1一z2)dxdy,其中S为z=ey(0≤y≤a)绕z轴旋转成的曲面下侧.
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
曲面z—y—lnx+lnz=0与平面x+y一2z=1垂直的法线方程为__________.
将函数f(x)=在x=0处展成幂级数.
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P。
随机试题
群体压力来自于()
Christmaswascoming.Wewerehaving【C1】______weatherinLondonthatRobert【C2】______ChristmasweekinanItalianseasidewehad
体质因素与精神状态主要能影响人体的( )。
下列对港澳地区的铁路运输的表述错误的有()。
改革开放三十多年以来,广东经济发展连上新台阶,综合实力不断实现大跨越。1979—2012年,世界经济年均增长速度为2.8%,中国增速为9.8%,广东增速则达13.3%。持续较快的经济增速,推动广东经济总量不断跃上新台阶。自1989年开始,广东GDP总量(国
在后果预测中,下列()方法属于德尔菲法。
Ifyouwant______,youshouldspeakslowlyandclearlytothelisteners.
Inrecentyears,moreandmoreforeignersareinvolvedintheteachingprogramsoftheUnitedStates.Boththeadvantagesandth
Mostmeetingshaveanagenda.Foraformalmeeting,thisdocumentmaybehandedoutinadvancetoallparticipants.Foraninfor
NationalGeographicLiftsVeilonAirForceOneUntilFranklinD.Roosevelt,noU.S.Presidenttraveledbyairwhileinoffic
最新回复
(
0
)