首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
admin
2015-06-30
86
问题
设向量组α
1
,α
2
,…,α
s
为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α
1
,…,β+α
S
).
选项
答案
α
1
,α
2
,…,α
S
线性无关,因为Aβ≠0,所以β,β+α
1
,β+α
s
线性无关, 故方程组BY=0只有零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/er34777K
0
考研数学二
相关试题推荐
在同一个市场上销售两种不同商品A,B,设QA,QB分别是它们的需求量,PA,PB分别为其价格,生产这两种商品每件所需成本分别为已知需求函数为QA=95-10PA+20PB,QB=70+20PA-50PB试确定其价格,以使得利润最大。
设α1,α2,α3,α4,α5均是4维列向量,记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5)。已知方程Ax=α5有通解k(1,-1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程Bx=0的解的是(
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:至少存在一点ξ∈(0,1),使得|f’(ξ)|≥2M;
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________.
设曲线xy=1(x>0)上点P0(x0,y0)使得x2+2y2达到最小值,则点P0的坐标为()
试求由直线x=1/2与抛物线y2=2x所围成的平面图形绕y=1旋转一周所得旋转体的体积和表面积.
随机试题
简述技能工资制的优缺点。
对减少与消除散射线无关的措施是
胸部后前位肘部弯曲,双手反放于髋部,两肩尽量下垂并内转的目的是
根据现行证券公司代办股份转让的规则,对于不能满足每周5次股份转让条件的公司,股份转让的转让日为每周( )。
在艺术活动中能与他人相互配合,也能独立表现是对()幼儿的要求。
检验一个人对祖国忠诚程度的试金石是
设级数un收敛,则下列选项必为收敛级数的为()
设A是n阶矩阵,下列命题错误的是().
Sometimeschildrenhavetrouble______factfromfictionandmaybelievethatsuchthingsactuallyexist.
AuniqueclaydiskfoundattheMinoansiteofPhaistosisoften______astheearliestexampleofprintingbyscholarswhohave
最新回复
(
0
)