首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
admin
2022-04-02
48
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设α
1
=
,α
2
=
,β
1
=
,β
2
=
求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
=0,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以y≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, A=(α
1
,α
2
,β
1
,β
2
)=[*] [*] 所以γ=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/w2R4777K
0
考研数学三
相关试题推荐
与矩阵A=合同的矩阵是()
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。(Ⅰ)证明矩阵A能相似于对角矩阵;(Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
设总体X~N(μ1,σ2),y~N(μ1,σ2)。从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,…,Yn记样本均值分别为是σ2的无偏估计。求:Z的方差DZ.
设下列命题正确的是()
随机试题
(Para.3,PassageOne)Realizingthatmyfather’sdayswerelimited,Itookthetimetotellhimfacetofacehowmuchheme
伤口分泌物涂片可见X线检查发现特殊性改变为
节地与施工用地保护措施是指,制定环境管理计划及应急救援预案,采取有效措施,降低环境负荷,保护地下设施和文物等资源。()
流动比率越(),说明营运资本越多,对债权人而言,其债权就越安全。
目前多数国家对税收管辖权的选择是()。
企业从银行提取现金3000元,对此的会计处理是()。
在新中国成立60周年之际,电影《建国大业》在全国热映,明星大腕客串角色令人觉得不够严肃,但影片揭示了国民党政府失败的根本原因是()。
如图,有A,B,C,D,E,F六人站在正六边形的六个顶点上传球。从A开始,每次可随意传给相邻的两人之一,若在5次内传到D,则停止传球;若5次之内传不到D,则传完5次也停止传球。那么从开始到停止,有多少种不同的传球方法?
李某欠赵某1万元,赵某为了索要1万元将李某关在地窖里,后由于地窖缺氧李某死亡,赵某的行为构成()。
若已经声明了函数原型“voidfun(inta,doubleb=0.0);”,则下列重载函数声明中正确的是()。
最新回复
(
0
)