首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
admin
2022-04-02
104
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设α
1
=
,α
2
=
,β
1
=
,β
2
=
求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
=0,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以y≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, A=(α
1
,α
2
,β
1
,β
2
)=[*] [*] 所以γ=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/w2R4777K
0
考研数学三
相关试题推荐
与矩阵A=合同的矩阵是()
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设矩阵A=,则A与B().
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
一电子仪器由两个部件构成,以X和Y,分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
随机试题
血栓按其组成成分可分
A.桂枝B.防风C.紫苏D.辛夷E.白芷性微温,善治风寒表证及小儿惊风的是()。
中国居民张某为一国企员工,该企业实行绩效工资制度,2019年张某收入情况如下:(1)每月应税工资8500元,餐补500元。(2)每月公务交通,通信补贴800元,所在省规定的标准为600元/月。(3)2月份取得过节费4000元。(4)10月份取得省
一套好的福利计划应具备的特征不包括()。
给定资料1.2015年3月,中共中央、国务院下发《关于构建和谐劳动关系的意见》(以下简称《意见》)指出,劳动关系是生产关系的重要组成部分,是最基本、最重要的社会关系之一。劳动关系是否和谐,事关广大职工和企业的切身利益,事关经济发展与社会和谐。《意见》
在中国四大古典文学名著中,唯一出自于清代的小说是()。
中华文化绵延5000年,有其独特的价值体系,已成为中华民族的基因。中华优秀传统文化是中华民族的突出优势,________着中华民族最深沉的精神追求,为中华民族生生不息、发展壮大提供了丰厚________,潜移默化地影响着中国人的思想方式和行为方式,至今仍具
下列叙述中正确的是
Whoisthistalkfor?
A、Bothofthemarebotheredwiththesmokeinthecinema.B、Themandoesn’tagreetothewoman’sopinion.C、Theroomissmokybe
最新回复
(
0
)