首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2019-01-05
48
问题
二次型f(x
1
,x
2
,x
3
)=XTAX在正交变换X=QY下化为10y
1
2
一4y
2
2
一4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
一4y
2
2
一4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,一4,一4. (1)Q的第1列[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)
T
正交,因此就是方程x
1
+2x
2
+3x
3
=0的非零解.求出此方程的一个正交基础解系η
2
=(2,一1,0)
T
,[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,一4η
2
,一4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得[*] [*] 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/evW4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
方程组有非零解,则k=________。
设随机变量X服从[1,3]上的均匀分布,则
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令a=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设X1,X2,…,Xm是取自总体N(0,1)的简单随机样本,记
幂级数的收敛域为_________。
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。(Ⅰ)a,b为何值时,g(x)在x=0处连续;(Ⅱ)a,b为何值时,g(x)在x=0处可导。
设f(x)=∫xxecostdt,求∫0πf(x)cosxdx.
设总体X~P(λ),则来自总体X的简单随机样本X1,X2,…,Xn的样本均值的概率分布为______.答案
随机试题
为进一步提升北京旅游行业整体队伍素质,打造高水平、懂业务的旅游景区建设与管理队伍,北京旅游局将为工作人员进行一次业务培训,主要围绕“北京主要景点”进行介绍,包括文字、图片、音频等内容。请根据考生文件夹下的素材文档“北京主要景点介绍-文字.docx”,帮助主
由于珠光体耐热钢热影响区具有较大的淬硬倾向,故不宜采用电渣焊工艺。()
人体生命的原动力是
某女,28岁。咳嗽胸痛已近半月。体温38℃,咳嗽,痰中带有脓血,味腥臭,小便黄少,大便干,舌红苔黄腻,脉滑数。辨证为
农村资金互助社的资金不可以用于购买国债和金融债券。()
下列说法中不正确的是()。
我国民间有一种说法:“白纸黑字,不容抵赖。”请运用合同法理论知识对其加以辨析。
某特级招待所报案失窃现款200万元。保安人员经过周密调查,得出结论是前台经理孙某作的案。所长说:“这是最不可能的。”保安人员说:“当所有其他的可能性都被排除了,剩下的可能性不管看来是多么不可能,都一定是事实。”以下哪项如果为真,则最为有力地动摇保安人员的说
求幂级数的收敛域和和函数.
Americanswithsmallfamiliesownasmallcaroralargeone.Ifbothparentsareworking,theyusuallyhavetwocars.Whenthe
最新回复
(
0
)