首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2019-01-05
113
问题
二次型f(x
1
,x
2
,x
3
)=XTAX在正交变换X=QY下化为10y
1
2
一4y
2
2
一4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
一4y
2
2
一4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,一4,一4. (1)Q的第1列[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)
T
正交,因此就是方程x
1
+2x
2
+3x
3
=0的非零解.求出此方程的一个正交基础解系η
2
=(2,一1,0)
T
,[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,一4η
2
,一4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得[*] [*] 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/evW4777K
0
考研数学三
相关试题推荐
计算积分
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1—X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()
A、 B、 C、 D、 B因为当x>0时,有tanx>x,于是有可见有I1>I2,可排除C、D,又由I2<,可排除A,故应选B。
设事件A、B、C满足P(ABC)>0,则P(AB|C)=P(A|C)P(B|C)的充要条件
假设随机变量X与Y相互独立,X服从参数为λ的指数分布,Y的分布律为P{Y=1}=P{Y=-1}=,则X+Y的分布函数()
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求f(x1,x2,x3)的合同规范形。
设f’(x)=arcsin(x一1)2及f(0)=0,求∫01f(x)dx.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
随机试题
下列关于标定地价的说法不正确的是()
某孕妇25岁,妊2产0,停经33周,阴道少许流血2天,不规律腹坠3个小时,肛查子宫颈管消退,宫口开大1cm。最不恰当的处理是
张兄与张弟因遗产纠纷诉至法院,一审判决张兄胜诉。张弟不服,却在赴法院提交上诉状的路上被撞昏迷,待其经抢救苏醒时已超过上诉期限一天。对此,下列哪一说法是正确的?
已知向量组α1=(3,2,一5)T,α2=(3,一1,3)T,α3=,α4=(6,一2,6)T,则该向量组的一个极大无关组是()。
根据2004年7月颁布的《国务院关于投资体制改革的决定》,我国对外商投资实行()。
货币市场工具通常指到期日在l~2年之间的短期金融工具。()
商业助学贷款的贷前调查人可以登录公安部全国公民身份信息系统,查询借款人身份证明是否真实、有效。()
一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个人都与其余九名选手各赛一盘,每盘棋的胜利者得1分,负者得0分,平局各得0.5分。结果甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分,那么甲、乙、丙三队参加比赛的选手的人数
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。某会计网校的刘老师正在准备有关《小企业会计准则》的培训课件,她的助手已搜集并整理了一一份该准则的相关资料存放在Word
DasMaedchenhatdiedunkl_____AugenvonderMutter.
最新回复
(
0
)