首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b ]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
设f(χ)在[a,b ]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
admin
2019-08-23
55
问题
设f(χ)在[a,b ]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f(
)<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
选项
答案
不妨设f(a)>0,f(b)>0,f([*])<0,令φ(φ)=e
-χ
f(χ),则 φ′(χ)=e
-χ
[f′(χ)-f(χ)]. 因为φ(a)>0,φ([*])<0,φ(b)>0,所以存在ξ
1
∈(a,[*]),ξ
2
∈([*],b), 使得φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 即e
-ξ
[f′(ξ)=-f(ξ)]=0,因为e
-ξ
≠0,所以f′(ξ)=f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/ezA4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上满足|f〞(χ)|≤2,且f(χ)在(a,b)内取到最小值.证明:|f′(a)|+|f′(b)|≤2(b-a).
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
设有矩阵Am×n,Bn×m,且Em+AB可逆.设其中利用上题证明P可逆,并求P-1.
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
随机试题
阅读苏轼《前赤壁赋》中的一段文字,然后回答小题。苏子曰:“客亦知夫水与月乎?逝者如斯,而未尝往也;盈虚者如彼,而卒莫消长也。盖将自其变者而观之,则天地曾不能以一瞬;自其不变者而观之,则物与我皆无尽也,而又何羡乎?且夫天地之间,物各有主,苟非吾之所
下列何种疾病为继发性免疫缺陷病
陈某是郊区一农民,在自家屋前园地里种植了一片罂粟花,作为观赏之用。罂粟壳属于特殊管理药品中的()。
图示结构的两杆面积和材料相同,在铅直力F作用下,拉伸正应力最先达到许用应力的杆是:
中国证监会及其派出机构依法对期货公司及其分支机构实行监督管理。()
封闭式基金的交易价格主要取决于()
材料四:阅读下面的短文。完成76—80题。人的天性中有强烈的追求认知和审美的愿望,它赋予了人无限的创造力和充满生机的高尚而纯洁的情感。科学和艺术,一个是理性的,一个是感性的,它们在人类的发展史上结伴而行。科学是人类追求真理的事业,它以观察、思考、求证
行政协调:是指协调、调整行政系统与其外部环境之间、行政系统内纵横向之间的各种关系,使之分工合作、权责清晰,相互配合,有效地实现行政目标和提高整体效能的行为。下列不属于行政协调的是()。
ThebiggestprovinceinCandais
Whocantakepartintheacademicyearprogram?______students.WherewilltheforeignstudentstakemealswhentheyareinCh
最新回复
(
0
)