首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2019-02-23
46
问题
设A=(a
ij
)是3阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
一1.
解析
由A≠0,不妨设a
ij
≠0,由已知的A
ij
=—a
ij
(i,j=1,2,3),得
及A=一(A
*
)
T
,其中A
*
为A的伴随矩阵.以下有两种方法:
用A
T
右乘A=一(A
*
)
T
的两端,得
AA
T
=一(A
*
)A
T
=一(AA
T
)
T
=一(|A|I)
T
,
其中I为3阶单位矩阵,上式两端取行列式,得
|A|
T
=(—1)
3
|A|
3
,或|A|
2
(1+|A|)=0,
因|A|≠0,所以|A|=一1.
转载请注明原文地址:https://kaotiyun.com/show/fB04777K
0
考研数学一
相关试题推荐
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zez所确定,则du=_____.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(I)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
设有甲、乙两名射击运动员,甲命中目标的概率是0.6,乙命中目标的概率是0.5,求下列事件的概率:(1)从甲、乙中任选一人去射击,若目标被命中,则是甲命中的概率;(2)甲、乙两人各自独立射击,若目标被命中,则是甲命中的概率.
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3.①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.②设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
设X1,X2,…,Xn+1是取自正态总体N(0,σ2)的简单随机样本,记
设X1,X2,…,Xn是来自正态总体N(μ,σ2)的简单随机样本,样本矩阵和样本方差分别为和S2=+kS2,已知统计量T是μ2的无偏估计,求后并在μ=0时计算D(T)。
随机试题
IBM从计算机终端供应商转变为网络咨询、服务商,体现了()
可存于唾液、初乳、呼吸道及肠道等外分泌液中的是
A.肾血管痉挛而致急性肾衰竭B.前列腺素合成障碍C.肾问质纤维化D.阻塞肾小管、肾小球E.肾小管坏死去甲肾上腺素会导致
在财务管理实务中,通常以()作为无风险报酬率。
通常情况下,企业经过努力可以达到的成本标准,这一标准考虑了生产过程中不可避免的损失、故障和偏差。则该标准成本为()。
李老师在教《落花生》一课时,让学生各抒己见,谈谈该做什么样的人。李老师运用的教学方法是()。
强调古典自由教育,注重经典名著的学习,对美国高等教育和成人教育产生了广泛的影响的教育思潮是
(2016年真题)下列选项中,可以认定为建筑物区分所有权的业主的有()。
一江南园林拟建松、竹、梅、兰、菊5个园子。该园林拟设东、南、北3个门,分别位于其中3个园子。这5个园子的布局满足如下条件:(1)如果东门位于松园或菊园,那么南门不位于竹园;(2)如果南门不位于竹园,那么北门不位于兰园;(3)如果菊园在园林的中心,那么
Weliveandlearn.
最新回复
(
0
)