首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,f(0)=1,则曲线y=∫0xf(x)dx在(0,0)处的切线方程是_________.
设f(x)连续,f(0)=1,则曲线y=∫0xf(x)dx在(0,0)处的切线方程是_________.
admin
2019-08-11
84
问题
设f(x)连续,f(0)=1,则曲线y=∫
0
x
f(x)dx在(0,0)处的切线方程是_________.
选项
答案
y=x
解析
曲线在(0,0)处切线斜率k=y’|
x=0
=[∫
0
x
f(t)dt]’|
x=0
=f(0)=1.所以曲线在(0,0)处,切线方程为y=x.
转载请注明原文地址:https://kaotiyun.com/show/fCN4777K
0
考研数学二
相关试题推荐
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.
设α1,α2,α3,α4,α5,下列部分组中,是最大无关组的有哪几个?(1)α1,α2,α3.(2)α1,α2,α4.(3)α1,α2,α5.(4)α1,α3,α4.
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵,现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(b),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
随机试题
某政府投资社会保险基金,已知2000年投入40万元人民币,当年的收益率为20%,2000年的投资及收益又投入2001年,如果2001年末收益为150万,请问2001年的收益率?
下列发生在1958年的是()
A.分泌性腹泻B.渗透性腹泻C.渗出性腹泻D.动力性腹泻E.吸收不良性腹泻甲状腺功能亢进引起腹泻多属
口腔医师在确定拔牙适应证时首先应考虑的是
保和丸的组成药物中含有
某实行监理的工程,实施过程中发生下列事件:事件1:建设单位于2005年11月底向中标的监理单位发出监理中标通知书,监理中标价为280万元;建设单位与监理单位协商后,于2006年1月10日签订了委托监理合同。监理合同约定:合同价为260万元;因非监
下列情形中,可以引起诉讼时效中断的事由有()。
在日常教学中,由于学生表现良好,教师减少其家庭作业的量,教师这样的行为称为()。
奥苏伯尔提出的三个主要的影响有意义学习和迁移的认知结构变量是()。
怎样看待内部招聘的利弊?
最新回复
(
0
)