首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=0,,则
设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=0,,则
admin
2019-03-11
56
问题
设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=0,
,则
选项
A、f(0)是f(x)的极大值.
B、f(0)是f(x)的极小值.
C、(0,f(0))是曲线y=f(x)的拐点.
D、x=0不是f(x)的极值点,(0,f(0))也不是曲线y=f(x)的拐点.
答案
B
解析
由于
又f(x)在x=0的某邻域内有二阶连续导数,所以f’’(0)=0,但不能确定点(0,f(0))为曲线y=f(x)的拐点.由
,根据极限的保号性可知,在x=0的某邻域内必有
,即f’’(x)>0,从而f’(x)在该邻域内单调增加.又因f’(0)=0,所以f’(x)在x=0两侧变号,且在x=0的空心邻域内,当x<0时f’(x)<f’(0)=0,当x>0时f’(x)>f’(0)=0,由极值第一充分条件可知,x=0为f(x)的极小值点.即f(0)是f(x)的极小值,故选(B).
转载请注明原文地址:https://kaotiyun.com/show/fCP4777K
0
考研数学三
相关试题推荐
求幂级数的收敛域,并求其和函数.
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:A+B的特征值全大于a+b.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
幂级数的收敛半径为__________.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设f∈R2π,并且f(x)是奇函数,则它的傅里叶多项式的各项都是正弦函数;若f(x)是偶函数,则它的傅里叶多项式的各项除常数项外都是余弦函数.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设,求出可由两组向量同时线性表示的向量。
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
随机试题
①鼠洞使草场植被破坏严重②苍鹰的羽毛被视为高贵的装饰品③田鼠失去天敌大量繁殖④羊群缺少牧草被迫转场⑤草原上已很难见到苍鹰的影子下列对上述5个事件排序最合理的是()。
患者,男性,68岁。突发胸骨后剧烈疼痛,持续3小时,伴大汗,急诊入院。有吸烟、饮酒史。心电图见图3—11。1小时后,患者症状加重,心电图如图3—12所示,诊断为
A.抗结核治疗B.病灶清除术C.肾部分切除术D.肾切除术E.肾造瘘一侧肾结核无功能,对侧肾重度积水并尿毒症,应先作()
电石仓库属于甲类火灾危险陛场所,在日常监管中要采取特别的措施,下列措施中正确的是()。
桥梁三角网的基线一般采用()。
下列选项中属于可以终止劳动合同的是()。
下列错误中,能够通过试算平衡查找的有()。
编制单位预算的计算方法有()。
认为功能的丧失与特定部位无关,与受损面积有关是哪种脑机能学说的观点?()
在使用UML对数据库应用系统进行建模的过程中,状态图和活动图是常见的动态建模机制。有下列状态图和活动图:Ⅰ.Ⅱ.Ⅲ.Ⅳ.以上状态图或活动图语法正确的是()。
最新回复
(
0
)