首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2019-08-12
51
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故选项A不正确.
对于选项B,取α
4
=-α
1
,即知选项B不对.
对于选项D,可考察向量组(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),可知选项D不对.
至于选项C,因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/fON4777K
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式成立.
求函数y=excosx的极值.
若f(x)在x0点至少二阶可导,且则函数f(x)在x=x0处()
z’x(x0,y0)一0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
已知问a为何值时,向量组α1,α2,α3,α4线性相关;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
η1,η2是n元齐次方程组Ax=0的两个不同的解,若r(A)=n一1,则Ax=0的通解为()
随机试题
弦细脉的主病是
某美容店向王某推荐一种价格很便宜的护肤产品。王某对该产品如此便宜表示疑惑,店家解释为店庆优惠。王某买回使用后,面部出现红肿、瘙痒。后经质检部门认定,该护肤产品为劣质产品。王某遂向美容店索赔。对此,下列正确的是()
胸腺瘤放射治疗的适应证包括
【背景资料】某机场场道土基为盐渍土。机场于2011年8月正式开始飞行区跑道加长工程,此工程将跑道两端各延长200m,整个施工不涉及飞行程序及起飞着陆最低标准的改变。开工前,项目部准备了组织与进度管理文件,明确了施工安全管理措施,编制了施工进度计划
根据财务报表中的数据可以得到很多有意义的比率,这些比率主要是衡量客户资产的:()。
()不是劳动行政处罚。
某公司将税务机关确定的应于7月15H缴纳的税款20万元拖至7月25日缴纳,根据《中华人民共和国税收征收管理法》的规定,税务机关依法加收该公司滞纳税款的滞纳金为()元。
下列关于职业化管理的说法中,正确的是()。
设随机变量x的概率密度为fx(x)=(-∞<x<+∞),Y=X2的概率密度为____________.
(1)Acelebrityisawidely-recognizedorfamouspersonwhocommandsahighdegreeofpublicandmediaattention;therefore,one
最新回复
(
0
)