首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2019-08-12
57
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故选项A不正确.
对于选项B,取α
4
=-α
1
,即知选项B不对.
对于选项D,可考察向量组(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),可知选项D不对.
至于选项C,因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/fON4777K
0
考研数学二
相关试题推荐
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式成立.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
设又函数f(x)可导,求F(x)=f[φ(x)]的导数.
z’x(x0,y0)一0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
已知问a为何值时,向量组α1,α2,α3,α4线性相关;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
三元二次型f=XTAX经过正交变换化为标准形,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
随机试题
政治制度的内在特征不包括()
我国实施人类辅助生殖技术,下列违背卫生部制定的伦理原则的是()
患者,男,37岁。长夏时节,天气由暑热突转阴雨连绵,因着衣不慎,遂致感冒。症见头痛昏重,胸膈痞闷,脘腹胀痛,呕吐泄泻,舌质淡红,苔白腻。证属外感风寒、内伤湿滞之感冒,接诊医师处以藿香正气水。服用2天后症状消失。藿香正气水处方的佐药是()。
A、牛膝B、益母草C、泽兰D、鸡血藤E、王不留行被称为妇科经产要药的是()
有关全国建设系统优秀工程设计评选的要求,下列()不正确。
2010年11月13日,某双苯厂硝基苯精馏塔发生爆炸,造成8人死亡,60人受伤,直接经济损失6908万元,并引发松花江水污染事件。国务院事故及事件调查组认定,中石油吉林石化分公司双苯厂“11.13”,爆炸事故和松花江水污染事件是一起特大生产安全责任事故和特
下列对于合同权利义务终止的说法正确的是()。
远航企业于2011年12月31日购进一座建筑物,于2012年1月1日用于出租。该建筑物的成本为1210万元,用银行存款支付。建筑物预计使用年限为20年。预计净残值为10万元。该建筑物划分为投资性房地产,采用公允价值模式进行计量,年租金为150万元,于每年年
下列选项中,适合采用超事业部的企业的特点为()
lease
最新回复
(
0
)