首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: a,b满足何种条件时,β不能由α1,α2,α3,α4线性表示;
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: a,b满足何种条件时,β不能由α1,α2,α3,α4线性表示;
admin
2021-07-27
50
问题
设向量组α
1
=[1,l,1,2]
T
,α
2
=[3,a+4,2a+5,a+7]
T
,α
3
=[4,6,8,10]
T
,α
4
=[2,3,2a+3,5]
T
;β=[0,1,3,6]
T
.求:
a,b满足何种条件时,β不能由α
1
,α
2
,α
3
,α
4
线性表示;
选项
答案
当a=1/2,b任意时,r(A)≠r(A),故Ax=β无解,β不能由α
1
,α
2
,α
3
,α
4
线性表示.当a≠1/2,b≠1时,r(A)≠r(A),故Ax=β无解,β不能由α
1
,α
2
,α
3
,α
4
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/fQy4777K
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,A是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
已知向量组则向量组α1,α2,α3,α4,α5的一个极大无关组为()
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
随机试题
简述国家垄断资本主义的基本形式。
汽车继电器的用途有哪些?
离心泵在正常运转时,其扬程与升扬高度的大小比较是()。
急性药物性间质性肾炎的病理表现是
A、技术意义B、统计意义C、经济意义D、临床意义E、法律意义处方可作为患者已缴药费的凭证,也是统计医疗药品消耗,预算采购药品的依据。此表明处方具有()
某工程采用工程量清单计价招标,工程量清单中的挖方量为2800m3,投标人根据地质资料和施工方案计算的挖方量为5200m3,人工费为44000元,材料费为16000元,机械费为39000元,管理费以人、材、机费合计为计算基础,费率为17%,利润以人、材、机费
建设项目可行性研究可分为().[2005年真题]
(2010年)资产负债表项目中,应根据有关科目余额减去备抵科目余额后的净额填列的有()。
【2014北京NO.51~55】从花粉到花生,让人类产生过敏变态反应的东西实在太多了。变态反应研究起步相对较晚,“变态反应”这一术语是儿科医生冯•皮尔凯和贝拉•锡克在20世纪初首先提出的。几乎同一时期,“过敏症”使生理学家查尔士.里歇声名远播并荣膺1913
TheiPhonehastakenabigbiteoutoftheBlackBerryinamarketwheretheolderphoneoncedominated:businesscustomersinN
最新回复
(
0
)