首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1=(1,0,1,2),α2=(0,1,2,1),α3=(—2,0,—2,—4),α4=(0,1,0,1),α5=(0,0,0,—1),则向量组α1,α2,α3,α4,α5的秩为________。
向量组α1=(1,0,1,2),α2=(0,1,2,1),α3=(—2,0,—2,—4),α4=(0,1,0,1),α5=(0,0,0,—1),则向量组α1,α2,α3,α4,α5的秩为________。
admin
2019-03-23
69
问题
向量组α
1
=(1,0,1,2),α
2
=(0,1,2,1),α
3
=(—2,0,—2,—4),α
4
=(0,1,0,1),α
5
=(0,0,0,—1),则向量组α
1
,α
2
,α
3
,α
4
,α
5
的秩为________。
选项
答案
4
解析
因为以α
1
,α
2
,α
4
,α
5
构成的行列式
=2≠0,故α
1
,α
2
,α
4
,α
5
线性无关,而向量的维数为4,则α
1
,α
2
,α
3
,α
4
,α
5
必线性相关,所以R(α
1
,α
2
,α
3
,α
4
,α
5
)=4。
转载请注明原文地址:https://kaotiyun.com/show/fTV4777K
0
考研数学二
相关试题推荐
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设A是m×n实矩阵,r(A)=n,证明ATA是正定矩阵.
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12-3y22+5y32?
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。验证是A的
假设A是n阶方阵,其秩r<n.那么在A的n个行向量中
随机试题
根据生产经营的不同产品或产品系列进行的部门划分是()
在价值观念刚性小的国家,人们比较重视()
A.病例一对照研究B.队列研究C.流行病学实验研究D.生态学研究E.现况调查以是否暴露于某因素为分组的是
下列说法不符合凝血的现代观念的是
A.月经周期正常,但经期延长B.月经间隔时间正常,经期流血时间长C.周期、经期、月经量都不正常D.突然大量出血,并发痛经E.月经周期无规律子宫内膜不规则脱落
以下说法正确的是()。
下列关于公示催告程序特点的哪些说法是正确的?()
根据下列材料回答问题。2014年我国实施“单独两孩”生育政策,出生人口1687万人,比上年增加47万人。2016年实施“全面两孩”生育政策,出生人口1786万人,比上年增加131万人;出生率与“十二五”时期年平均出生率相比,提高了0.84个千分点。201
下面关于风险厌恶者的论述,()是正确的。
【B2】【B3】
最新回复
(
0
)