首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求[0,+∞)上连续曲线y=f(χ)≥0的方程,使曲线y=f(χ)与两坐标轴及过点(t,0)(t>0)的垂直于χ轴的直线所围成的曲边梯形,绕χ轴旋转所形成的旋转体的形心的横坐标等于t.
求[0,+∞)上连续曲线y=f(χ)≥0的方程,使曲线y=f(χ)与两坐标轴及过点(t,0)(t>0)的垂直于χ轴的直线所围成的曲边梯形,绕χ轴旋转所形成的旋转体的形心的横坐标等于t.
admin
2019-05-14
27
问题
求[0,+∞)上连续曲线y=f(χ)≥0的方程,使曲线y=f(χ)与两坐标轴及过点(t,0)(t>0)的垂直于χ轴的直线所围成的曲边梯形,绕χ轴旋转所形成的旋转体的形心的横坐标等于
t.
选项
答案
该旋转体记为Ω
t
,它的体积是 V=π∫
0
1
f
2
(χ)dχ. 它的形心的χ坐标 [*]χdV/π∫
0
t
f
2
(χ)dχ, 其中[*]=∫
0
t
χ.πf
2
(χ)dχ 于是[*]=π∫
0
t
χf
2
(χ)dχ/π∫
0
t
f
2
(χ)dχ=∫
0
t
χf
3
(χ)dχ/∫
0
t
f
2
(χ)dχ. 按题意得 ∫
0
t
χf
2
(χ)dχ/∫
0
t
f
2
(χ)dχ=[*]t, 即∫
0
t
χf
2
(χ)dχ=[*]t∫
0
t
f
2
(χ)dχ. ① 两边求导得 tf
2
(t)=[*] 即tf
2
(t)=∫
0
t
f
2
(t)dt ② 再对t求导得 f
2
(t)+2tf(t)f′(t)=4f
2
(f), 即f′(t)-[*]f(t)=0(t>0). ③ (①,②式中令t=0时等式自然成立,不必另加条件.) 现在③式两边乘[*]得[*]=0.积分得 f(t)=C[*] (t>0). 又f(χ)在[0,+∞)上连续,因此求得 f(χ)=C[*](χ≥0),其中C>0为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/fp04777K
0
考研数学一
相关试题推荐
中,无穷大量是
设A是任一n阶矩阵,下列交换错误的是
把y看作自变量,x为因变量,变换方程
求下列极限:
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
设二维随机变量(X,Y)的联合密度函数为试求:方差DX,DY;
设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差σ2>0,记Xi,则X1-的相关系数为
设曲面S是上半球面x2+y2+z2=a2(z≥0,a>0)被柱面x2+y2=ax所割下部分,求S的面积.
求下列微分方程的通解:y2dx=(x+y2e(y-1)/y)dy;
由曲线y=x2,y=x+2所围成的平面薄片,其上各点处的面密度μ=1+x2,则此薄片的质量M=______.
随机试题
相对危险度是
婴幼儿胸部正位摄影,须给予遮盖屏蔽的部位是
A.糖原合成酶B.糖原磷酸化酶C.葡萄糖-6-磷酸酶D.UDPGE.己糖激酶(或葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶肝糖原可以补充血糖是因为肝脏中含有
要确认木栓化细胞壁,最适宜滴加的试液是
《中国药典》规定,以蒽醌类化合物为质量控制成分之一的中药是()。
下列各项中,不属于产品成本构成比率的是()。
渲示文稿PowerPoint的基本组成单元是幻灯片,下列工具栏按钮可以插入新幻灯片的是()。
Hehasn’theardfromhisfriend______lastmonth.
设u=xyz,求du.
PaulEvans646NestorCres.Northwood,Manchester,UKM441EJDearMr.Evans,Iwouldliketoexpressmythankstoyoufo
最新回复
(
0
)