首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: 存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: 存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
admin
2018-06-30
98
问题
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
选项
答案
根据拉格朗日中值定理,存在η∈(0,ξ),ξ∈(ξ,1),使得 [*] 从而[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xRg4777K
0
考研数学一
相关试题推荐
设F(x,y)=在D=[a,b]×[c,d]上连续,求I=∫∫DF(x,y)dxdy并证明:I≤2(M-m),其中M和m分别是f(x,y)在D上的最大值和最小值.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λX的概率密度函数fy(y).
微分方程的通解为________
求曲线y=ex上的最大曲率及其曲率圆方程.
随机试题
设以二叉链表为二叉树的存储结构,结点的结构如下:lehilddatarchild其中data域为整数,试设计一个算法voidchange(bitreptrr):若结点左孩子的data域的值大于右孩子的data域的值,则交
属于多血供型的肝内转移瘤是
患者产后2天,小便不通,小腹胀急,少气懒言,四肢无力,面色少华。舌淡,苔少,脉缓弱。治宜
案情:居住在甲市A区的王某驾车以60公里时速在甲市B区行驶,突遇居住在甲市C区的刘某骑自行车横穿马路,王某紧急刹车,刘某在车前倒地受伤。刘某被送往甲市B区医院治疗,疗效一般,留有一定后遗症。之后,双方就王某开车是否撞倒刘某,以及相关赔偿事宜发生争执,无法达
建设项目的环境保护要根据国家要求,结合污染物的特性、排放量、浓度以及危害性,采取切实有效的防护措施。在研究具体治理措施方案时要考虑()。
用友报表系统中,报表数据文件还可以被转换成的文件格式有( )。
对未完成义务教育的未成年犯和被采取强制性教育措施的未成年人应当进行义务教育,所需经费由()予以保障。
【2015年陕西铜川.单选】主张绅士教育,并著有《教育漫话》的教育家是()。
试论基督教对封建时期西欧的影响。
A、Babies.B、Oldmen.C、Youngmen.D、Doctors.B注意听清楚本题问的是没那么必要注射疫苗的人(lessnecessary)。新闻中指出,美国政府小组委员会认为孕妇、医护工作者、孩子和24岁以下的年轻人都应该优先注
最新回复
(
0
)