首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x—t)dt,f(0)=0,证明:存在一点ξ∈[一a,a],使得a4|f"’(ξ)|=12∫—aa|f(x)|dx.
设f(x)在[一a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x—t)dt,f(0)=0,证明:存在一点ξ∈[一a,a],使得a4|f"’(ξ)|=12∫—aa|f(x)|dx.
admin
2017-07-26
36
问题
设f(x)在[一a,a]上具有三阶连续导数,且满足f’(x)=x
2
+∫
0
x
tf(x—t)dt,f(0)=0,证明:存在一点ξ∈[一a,a],使得a
4
|f"’(ξ)|=12∫
—a
a
|f(x)|dx.
选项
答案
由f’(x)=x
2
+∫
0
x
tf(x—t)dt[*]x
2
+x∫
0
x
f(u)du一∫
0
x
uf(u)du, 知f’(0)=0,f"(x)=2x+I f(u)du,f"(0)=0. 根据台劳公式,有 [*] 这里m,M为|f"’(x)|在[一a,a]上的最小值、最大值. 故存在点ξ∈[一a,a]使得|f"’(ξ)|=[*]=f(x)|dx.
解析
只要证|f"’(ξ)|=
|f(x)dx,由于|f"(x)|在[—a,a]上连续,可对f"’(x)在[一a,a]上用介值定理.为证明
|f(x)dx如介于|f"’(x)|在[—a,a]上的最小值和最大值之间.对f(x)用麦克劳林公式.
转载请注明原文地址:https://kaotiyun.com/show/fuH4777K
0
考研数学三
相关试题推荐
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设f(x)为连续函数.且x2+y2+z2=∫xyf(x+y-t)dt,则=______
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
设试证明:P(A)+P(B)一P(C)≤1.
随机试题
中枢性发热的特点为:()
托马斯征
下列哪些肿瘤与日晒(或紫外线照射)有关
患者,女,31岁。右侧牙痛3天,龈肿,痛剧,伴口臭,口渴,大便3日未行,舌苔黄,脉洪。治疗除取颊车、下关穴外。还应加()
女,22岁。受凉后出现寒战、发热、咳嗽,咳少许黏痰3天,自服“感冒药”后热退。查体:T39.5℃,急性病容,右肺呼吸音减弱,语音震颤增强,血WBC13.4×109/L,N0.87。胸部X线片显示右下肺大片状模糊阴影。该患者抗感染治疗不宜首选的是(
动脉导管未闭最适当的手术阶段是()。
民用建筑工程室内空气中甲醛检测,可采用现场检测方法,测量结果在0~0.60mg/m3测定范围内的不确定度应小于或等于( )。当发生争议时,应以《公共场所卫生标准检验方法》(GB/T18204.26—2000)中酚试剂分光光度法的测定结果为准。
背景资料:某水利水电工程施工企业在对公司各项目经理部进行安全生产检查时发现如下事件:事件一:公司第一项目经理部承建的某泵站工地,在夜间进行泵房模板安装作业时,由于部分照明灯损坏,安全员又不在现场,一木工身体状况不佳,不慎从12m高的脚手
根据国家审计机关的隶属关系和审计报告的报告对象,可以将国家审计划分为()。
松树:松鼠:森林
最新回复
(
0
)