首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=A。
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=A。
admin
2018-12-29
32
问题
已知A=
是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P
—1
AP=A。
选项
答案
A的特征多项式为 [*] 则A的特征值为λ
1
=2n—1,λ
2
=n—1,其中λ
2
=n—1为n—1重根。 当λ
1
=2n—1时,解齐次方程组(λ
1
E—A)x=0,对系数矩阵作初等变换,有 [*] 得到基础解系α
1
=(1,1,…,1)
T
。 当λ
2
=n—1时,齐次方程组(λ
2
E—A)x=0等价于x
1
+x
2
+ … +x
n
=0,得到基础解系 α
2
=(—1,1,0,…,0)
T
,α
3
=(—1,0,1,…,0)
T
,…,α
n
=(—1,0,0,…,1)
T
, 则A的特征向量是k
1
α
1
和k
2
α
2
+k
3
α
3
+ … +k
n
α
n
,其中k
1
≠0,k
2
,k
3
,…,k
n
不同时为零。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fxM4777K
0
考研数学一
相关试题推荐
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:随机变量的分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:参数p的值;
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设A为三阶实对称矩阵,且存在可逆矩阵若kE+A*合同于单位矩阵,求k的取值范围.
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
随机试题
在市场经济条件下,利率水平的高低主要取决于()。
悬臂梁受载情况如图所示,在截面C上:
控制图的异常现象是指点子排列出现了( )等情况。
以下关于产业组织创新的说法不正确的是( )。
下列有关持续经营假设的说法中,不正确的有()。
阅读材料完成下列问题。《傅雷家书两则》原文1954年10月2日聪,亲爱的孩子。收到9月22日晚发的第六信,很高兴。我们并没为你前信感到什么烦恼或是不安。我在第八封信中还对你预告,这种精神消沉的情形,以后还是会有的。我是过来人,
最近一期的《瞭望新闻周刊》有文章称“消费就是爱国”,有关专家撰文加以嘲笑:我从来没有想到________的生活方式,居然会成为一种道德瑕疵。填入划横线部分最恰当的一项是()。
下列人员,享有选举权的是()。
物理安全技术包括机房安全和________。
Hewouldhavefinishedhiscollegeeducation,buthe______toquitandfindajobtosupporthisfamily.
最新回复
(
0
)