首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 在区间(0,1)中随机地取两个数,则两个数之差的绝对值小于1/2的概率为________.
[2007年] 在区间(0,1)中随机地取两个数,则两个数之差的绝对值小于1/2的概率为________.
admin
2019-04-15
53
问题
[2007年] 在区间(0,1)中随机地取两个数,则两个数之差的绝对值小于1/2的概率为________.
选项
答案
[*]
解析
解一 用几何型概率的计算公式求之.设(x,y)为所取的两个数,则样本空间为
Ω={(x,y)|0<x<1,0<y<1}.
记区域A={(x,y)|(x,y)∈Ω,|x-y|<1/2),则A的图形如图3.1.2.1中阴影部分所示.这是因为由|x-y|<1/2可得到
x-y<1/2 及 -(x-y)<1/2, 即 x-y>-1/2.
而由命题3.1.2.1知,x-y<1/2的图形是在直线x-y=1/2上方的图形,而x-y>-1/2的图形是在直线x-y=-1/2下方的图形,两者的交即为图3.1.2.1中的阴影部分所示,则
S
A
(A的面积)=1-2×(1/2)(1-1/2)
2
=3/4.
显然S
Ω
=1,故所求概率为
解二 如图3.1.2.2所示,把区间[0,1]放在数轴上,设随机变量ξ,η分别表示任取两点的坐标,这里所说的“任取”表示“随机地取",也表示“等可能地取”,因而ξ与η相互独立,且都在[0,1]上服从均匀分布,即
因ξ与η相互独立,故(ξ,η)的密度为
因此,
易求得S
D
1
=1/8=S
D
2
,故
注:命题3.1.2.1 (1)设事件A={(x,y)|ax+by<d,b>0)(y前面系数b的符号与y所满足的不等式的符号相反),则事件A的几何图形在直线ax+by=d的下方.
(2)设事件B={(x,y)|ax+by<d,b<0)(y前面系数b的符号与y所满足的不等式符号一致),则事件B的几何图形在直线ax+by=d的上方.
转载请注明原文地址:https://kaotiyun.com/show/g7P4777K
0
考研数学三
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设A为三阶矩阵,且|A|=4,则=______.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设f(x)在[a,b]上二阶可导,且f’’(x)>0,证明:f(x)在(a,b)内为凹函数.
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’(ξ)=2.
随机试题
设=l,其中l为-定值且(l≠0,l≠1),则f(x)在点x=a处
药物作用的强弱取决于:药物作用持续的久暂取决于:
男孩,3岁,自幼人工喂养,食欲极差,有时腹泻。身高85cm,体重7500g,皮肤干燥、苍白,腹部皮下脂肪厚度约0.3cm,脉搏缓慢,心音较低钝。假设此患儿出现哭而少泪。眼球结膜有毕脱斑,则有
锅炉、压力容器、电梯、起重机械等特种设备及其安全附件、安全保护装置的制造、安装、改造单位,应当经国务院()许可,方可从事相应的活动。
按照《公约》的规定,一项发盘的内容必须十分肯定,只有具备()才算十分确定。
根据《个人贷款管理暂行办法》有关贷款资金支付管理的规定,采用贷款人受托支付的,贷款人应()。
近代,地方自治制的警察管理体制的代表国家是()。
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
有以下程序:#include<stdio.h>main(){inta=0,b=0,c=0,d=0;printf(’’%d,%d,%d,%d\n’’,a,b,c,d);}程序的运行结果是()。
A、Mark’strainhasleftearlier.B、Mark’strainhasbeendelayed.C、Mark’strainisoftenlate.D、Markislikelytomissthetra
最新回复
(
0
)