首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
admin
2019-08-01
53
问题
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求∫
0
π
[
]dx。
选项
答案
由f’(x)=g(x),g’(x)=2e
x
-f(x),得f"(x)=g’(x)=2e
x
-f(x),即 f"(x)+f(x)=2e
x
, 此为二阶常系数线性非齐次方程,且右端呈P
m
(x)e
λx
型(其中P
m
(x)=2,λ=1),对应的齐次方程为f"(x)+f(x)=0,特征方程为r
2
+1=0,对应的特征值为r=±i,于是齐次方程的通解为 y=C
1
cosx+C
2
sinx。 因为λ=1≠r,所以设特解为y
*
=ae
x
(a为实数),(y
*
)"=ae
x
,代入f"(x)+f(x)=2e
x
,ae
x
+ae
x
=2e
x
,所以a+a=2,即a=1,从而特解 y
*
=e
x
, 非齐次方程的通解为 f(x)=C
1
cosx+C
2
sinx+e
x
, 又f(0)=0,所以,f(0)=C
1
cos0+C
2
sin0+e
0
=0[*]C
1
+1=0[*]C
1
=-1, 又f’(x)=-C
1
sinx+C
2
cosx+e
x
,f’(0)=g(0)=2,所以, f’(0)=-C
1
sin0+C
2
cos0+e
0
=C
2
+1=2[*]C
2
=1, 所以原方程的解为 f(x)=sinx-cosx+e
x
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gDN4777K
0
考研数学二
相关试题推荐
已知α1,α2,…,αt都是非齐次线性方程组Ax=b的解,如果c1α1+c2α2+…+ctαt仍是Ax=b的解,则c1+c2+…+ct=______.
证明∫0ex2cosnxdx=0.
讨论下列函数的连续性并判断间断点的类型:
运用导数的知识作函数y=x+的图形.
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
讨论函数在x=0处的连续性与可导性.
若函数f(x)在x=1处的导数存在,则极限=_______.
随机试题
教育目的对整个教育工作起()作用。
A.超急性期心肌梗死B.急性期心肌梗死C.近期心肌梗死D.陈旧性心肌梗死ST段斜形抬高、T波高大、无异常Q波提示
关于横向磁化矢量的描述,错误的是
患者,女,25岁。痛经2年,经行不畅,小腹胀痛拒按,经色紫红,夹有瘀块,血块下后痛可缓解,舌有瘀斑,脉沉涩。治疗应以哪组经脉腧穴为主
一级建筑位移观测的基准点不应少于()个。
凡申请出境居住( )的中国籍人员,必须持有卫生检疫机关签发的健康证明。
我国目前消费税的税目有()。
物业管理绩效评价的基本要素有()
缺货成本是指企业适时适地的持有所需零部件或物料时所发生的成本。()
测试程序使用的数据应
最新回复
(
0
)