首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
admin
2019-08-01
62
问题
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求∫
0
π
[
]dx。
选项
答案
由f’(x)=g(x),g’(x)=2e
x
-f(x),得f"(x)=g’(x)=2e
x
-f(x),即 f"(x)+f(x)=2e
x
, 此为二阶常系数线性非齐次方程,且右端呈P
m
(x)e
λx
型(其中P
m
(x)=2,λ=1),对应的齐次方程为f"(x)+f(x)=0,特征方程为r
2
+1=0,对应的特征值为r=±i,于是齐次方程的通解为 y=C
1
cosx+C
2
sinx。 因为λ=1≠r,所以设特解为y
*
=ae
x
(a为实数),(y
*
)"=ae
x
,代入f"(x)+f(x)=2e
x
,ae
x
+ae
x
=2e
x
,所以a+a=2,即a=1,从而特解 y
*
=e
x
, 非齐次方程的通解为 f(x)=C
1
cosx+C
2
sinx+e
x
, 又f(0)=0,所以,f(0)=C
1
cos0+C
2
sin0+e
0
=0[*]C
1
+1=0[*]C
1
=-1, 又f’(x)=-C
1
sinx+C
2
cosx+e
x
,f’(0)=g(0)=2,所以, f’(0)=-C
1
sin0+C
2
cos0+e
0
=C
2
+1=2[*]C
2
=1, 所以原方程的解为 f(x)=sinx-cosx+e
x
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gDN4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
证明:
讨论下列函数的连续性并判断间断点的类型:
设函数f(x)有任意阶导数且f’(x)=f2(x),则f(n)(x)=_______(n>2).
设求f(x)在点x=0处的导数.
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
设f(x)=又a≠0,问a为何值时存在.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
随机试题
可治疗老年便秘、产后便秘的通便类药物是
王某与李某为一幢楼房的权属发生纠纷,起诉至人民法院。张某向人民法院主张该幢楼房归他所有,人民法院遂追加张某为第三人。其后原告王某申请撤诉,根据上述情况下列说法正确的是:
符合条件()时,用电单位宜设置自备电源。
若投资15万元建造一个任何时候均无残值的临时仓库,估计年收益为25000元,假定基准收益率为12%,仓库的寿命期为8年,则该项目()。
通过摆事实、讲道理进行教育的德育方法是___________。
当社会总需求小于社会总供给时,一般不宜采取()。
根据以下资料,回答以下题。2014年,某市十大产业链企业累计完成产值3528.8亿元,同比增长13.4%;实现主营业务收入3478.8亿元、利税348.9亿元、利润222.9亿元,同比分别增长13.0%、19.4%和19.5%。其中,十大产业链规
某眼镜店推出一款墨镜,该墨镜的利润为进价的25%,在“世界护眼日”当月,又推出了一款近视镜,该近视镜的利润为进价的15%,墨镜比近视镜的卖价贵142元,近视镜的进价是墨镜进价的84%,那么墨镜进价为多少元?
“江山多娇—2011.中国百家金陵画展(中国画)”,于11月16日上午在江苏省美术馆举行。(语料来源:《美术报》,2011年11月21日)
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.Theeconomicadvancehasbeen【C1】______
最新回复
(
0
)