首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
admin
2019-08-01
59
问题
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求∫
0
π
[
]dx。
选项
答案
由f’(x)=g(x),g’(x)=2e
x
-f(x),得f"(x)=g’(x)=2e
x
-f(x),即 f"(x)+f(x)=2e
x
, 此为二阶常系数线性非齐次方程,且右端呈P
m
(x)e
λx
型(其中P
m
(x)=2,λ=1),对应的齐次方程为f"(x)+f(x)=0,特征方程为r
2
+1=0,对应的特征值为r=±i,于是齐次方程的通解为 y=C
1
cosx+C
2
sinx。 因为λ=1≠r,所以设特解为y
*
=ae
x
(a为实数),(y
*
)"=ae
x
,代入f"(x)+f(x)=2e
x
,ae
x
+ae
x
=2e
x
,所以a+a=2,即a=1,从而特解 y
*
=e
x
, 非齐次方程的通解为 f(x)=C
1
cosx+C
2
sinx+e
x
, 又f(0)=0,所以,f(0)=C
1
cos0+C
2
sin0+e
0
=0[*]C
1
+1=0[*]C
1
=-1, 又f’(x)=-C
1
sinx+C
2
cosx+e
x
,f’(0)=g(0)=2,所以, f’(0)=-C
1
sin0+C
2
cos0+e
0
=C
2
+1=2[*]C
2
=1, 所以原方程的解为 f(x)=sinx-cosx+e
x
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gDN4777K
0
考研数学二
相关试题推荐
证明∫0ex2cosnxdx=0.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
设函数f(x)有任意阶导数且f’(x)=f2(x),则f(n)(x)=_______(n>2).
设求f(x)在点x=0处的导数.
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
随机试题
给定资料: 1.“碧海蓝天”曾经是广西北部湾引以为自豪的生态品牌。北部湾素有最洁净港湾的美誉,“银沙堆细浪,海豚戏翔鸥,南珠映日月,红树掩堤沙",这是人们对北部湾美景的描绘。 自2006年3月广西北部湾经济区成立以来,北海、南宁、钦州、防城港四个地级市
公文写作的时限性强,但不是所有的公文都要求做到快写快发。
发生压疮的原因,以下哪项不符()。
A.驱虫药、攻下药B.安神药C.对胃肠道有刺激性的药D.截疟药宜空腹服用的药是
A.马来酸罗格列酮B.瑞格列奈C.格列本脲D.甲苯磺丁脲E.阿卡波糖增加胰岛素敏感性的降血糖药物是
下列指标中,属于反映居住状况的统计指标有()。
某铁路隧道施工测量质量实行过程检查和最终检查,其中最终检查由施工单位的()负责实施。
在商业银行的代理业务中,销售时进行不恰当的广告和不真实宣传,错误和误导销售的行为,属于代理业务操作风险控制中的()风险类别。
有劳动能力的人都有工作才是充分就业。()
Reebokexecutivesdonotliketoheartheirstylishathleticshoescalled"footwearforyuppies(雅皮士,少壮高薪职业人士)"’.Theycontend
最新回复
(
0
)