首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
admin
2017-08-31
59
问题
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
选项
答案
由(aE—A)(bE一A)=O,得|aE—A|.|bE一A|=0,则|aE—A|=0或者 |bE—A|=0.又由(aE—A)(bE—A)=O,得r(aE-A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE—A)+r(bE—A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|6E—A|=0,则a,b都是矩阵A的特征值. 方程组(aE—A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE一A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE-A)个. 因为n一r(aE—A)+n-r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/gFr4777K
0
考研数学一
相关试题推荐
[*]
(2011年试题,二)若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4.经正交变换化为y12+4z12=4则a=_____________.
若正项级数收敛,则().
计算曲面积分(1一xy)dydz+(x+1)ydzdx一4yz2dxdy,其中∑是弧段(1≤x≤3)绕x轴旋转一周所得的旋转曲面,∑上任一点的法向量与x轴正向夹角大于
设X1,X2,…,Xn+1是来自正态总体N(μ,σ2)的简单随机样本,记,S2=已知,则k,m的值分别为
设函数f(x,y)在区域D:x2+y2≤1上有二阶连续偏导数,且又Cr是以原点为心,半径为r的圆周,取逆时针方向,求
微分方程(2xsiny+3x2y)dx+(x3+x2cosy+y2)dy=0的通解是_______.
求函数f(x,y)=x2一xy+y2在点M(1,1)沿与x轴的正向组成a角的方向1上的方向导数,在怎样的方向上此导数有:(1)最大的值;(2)最小的值;(3)等于0.
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是()
设f(x;t)=((x-)(t-1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
随机试题
A、肾上腺皮质功能减退B、绝经期综合征C、先兆流产D、晚期乳腺癌E、骨质疏松己烯雌酚可用于
MynextdoorneighborJohnsonseemstohave()opinionontheshowlastnight.
静息电位大小接近于
关于肝转移癌的MRI表现,错误的是
反映肺成熟的羊水检查是
下列关于劳动价值论的说法中,正确的有()。
下图资本市场线中,切点投资组合具有的特征不包括()。
最早的纯粹的文人七言诗是_______。
按照法的原则的位阶和具体程序不同,可将法的原则分为()。
CarThievesCouldBeStoppedRemotely(遥远地)Speedingoff(超速行驶)inastolencar,thethiefthinkshehasgotagreatcatch.Bu
最新回复
(
0
)