首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,问a为何值时A能对角化。
设A=,问a为何值时A能对角化。
admin
2019-03-23
45
问题
设A=
,问a为何值时A能对角化。
选项
答案
矩阵A的特征多项式 |λE—A|=[*]=(λ—1)(λ—2)[λ—(2a—1)]。 (1)当2a—1≠1,2,即a≠1,[*]时,A有3个不同的特征值,故A可对角化; (2)当2a—1=1,即a=1时,A有特征值1(二重),2。 λ=1时,λE—A=E—A=[*],R(E—A)=2。因此二重特征值1只有一个线性无关的特征向量,故A不可对角化; (3)当2a—1=2,即a=[*]时,A有特征值1,2(二重),且可知R(2E—A)=2,从而A也不可对角化。 故当a≠1,[*]时,A可对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/gHV4777K
0
考研数学二
相关试题推荐
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
计算曲线y=ln(1一x2)上相应于0≤x≤的一端弧的长度.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b>0。
随机试题
房产税的计税依据有________、________。
糖尿病最严重的并发症是
对于1、2、3级评价项目,生态影响评价范围要以重要评价因子受影响的方向为扩展距离,一般为( )。
下列所给选项中,关于仲裁管辖的表达,正确的是()。
助理理财规划师只有明晰婚姻家庭( )因素,才能为客户量身定做财产规划。
下列各项中,表述正确的有()。
导游人员在讲解的时候要做到“自圆其说”。因此,导游人员对自己心里没有把握的问题,一时不能查实的问题,可以通过编撰以达到“自圆其说”。()
TheZhusuan,otherwiseknownastheChineseabacuswasofficiallylistedasanintangibleculturalheritageatthe8thAnnualUN
政治记者汤姆分析了十届美国总统的各种讲话和报告,发现其中有不少谎话。因此.汤姆推断:所有参加竞选美国总统的政治家都是不诚实的。以下哪项和汤姆的推断的意思是一样的?
Questions24-30:SurveyContentQuestionscanaskabout:opinionsandattitudesfactualcharac
最新回复
(
0
)