首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
admin
2018-05-23
38
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,α
t
都是n维列向量组,记矩阵
A=(α
1
,α
2
,…,α
s
),B=(β
1
,β
2
,…,β
t
)
证明:存在矩阵C,使得AC=B的充分必要条件是r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
,α
2
,…,α
s
).
已知矩阵方程AX=B有解,求a,b.并求它的一个解.
选项
答案
①根据向量组秩的性质, r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
1
,α
2
,…,α
s
) [*]β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 如果矩阵C使得AC=B,记C的(i,j)位元素为c
ij
,则 β
j
=c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 从而β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 反之,如果β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示,设 β
j
=c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 记C的(i,j)位元素为c
ij
的s×t的矩阵,则由矩阵乘法的定义,AC=B. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gOX4777K
0
考研数学三
相关试题推荐
设①求作可逆矩阵P,使得(AP)TAP是对角矩阵.②k取什么值时A+kE正定?
已知.f(x)二阶可导,且f(x)>0,f(x)fˊˊ(x)-[fˊ(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2(x1,x2∈R);(2)若f(0)=1,证明:f(x)≥efˊ(0)x(x∈R).
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设fn(x)=1-(1-cosx)n,求证:(1)对于任意正整数n,fn(x)=中仅有一根;(2)设有xn∈
两个无穷小量比较的结果是()
求齐次线性方程组基础解系.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
随机试题
根据《水利水电工程标准施工招标文件》,投标报价的评审中,不一定涉及的因素包括()。
一般各种施工合同示范文本都由()组成。
在固定资产系统的下列操作中,需要进行资产变动处理的有()。
甲公司为增值税一般纳税人,适用的增值税税率为17%。甲公司购入原材料,增值税专用发票注明价款为50万元,增值税为8.5万元,支付装卸费为0.3万元,入库前挑选整理费为0.2万元,运费为0.1万元(假设不考虑增值税),原材料入账价值为()万元。
刑事司法工作除依据《刑法》外,还依据以下哪部法律?()
2010年我国在线教育市场规模为491.1亿元,到2015年在线教育市场突破千亿元大关,达1171亿元。与热闹的市场相对的是,行业整体面临较大的盈利困难。截至2015年年底,我国约有9500家从事互联网教育的公司,经过对其中400家在线教育平台调查发现
A.O-连接的糖蛋白B.N-连接的糖蛋白C.两者均是D.两者均不是寡糖链中含唾液酸和岩藻糖的是
下列关于ServrUFTP服务器安装和配置的描述中,错误的是()。
WhichofthefollowingsentencesisINCORRECT?
HowlongdidLourdesSantiagoworkatPascalBusinessSystem?Whatactivitieswasheinvolvedinwhenhehadhispracticeinth
最新回复
(
0
)