首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
admin
2018-05-23
52
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,α
t
都是n维列向量组,记矩阵
A=(α
1
,α
2
,…,α
s
),B=(β
1
,β
2
,…,β
t
)
证明:存在矩阵C,使得AC=B的充分必要条件是r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
,α
2
,…,α
s
).
已知矩阵方程AX=B有解,求a,b.并求它的一个解.
选项
答案
①根据向量组秩的性质, r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
1
,α
2
,…,α
s
) [*]β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 如果矩阵C使得AC=B,记C的(i,j)位元素为c
ij
,则 β
j
=c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 从而β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 反之,如果β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示,设 β
j
=c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 记C的(i,j)位元素为c
ij
的s×t的矩阵,则由矩阵乘法的定义,AC=B. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gOX4777K
0
考研数学三
相关试题推荐
独立重复某项试验,直到成功为止.每次试验成功的概率为p,假设前5次试验每次试验费用为100元,从第6次起,每次试验费用为80元,试求该项试验总费用的期望值W.
已知.f(x)二阶可导,且f(x)>0,f(x)fˊˊ(x)-[fˊ(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2(x1,x2∈R);(2)若f(0)=1,证明:f(x)≥efˊ(0)x(x∈R).
当x→π时,若有-1~A(x-π)k,则A=_________,k=_________.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是_________.
-2arctan[*]+C,其中C为任意常数=-2arctant+C=-2arctan+C.
设则A31+A32+A33=________.
讨论f(x)=在x=0处的连续性与可导性.
设且A~B.求a;
设且f′(0)存在,求a,b.
随机试题
_______不但在营养方面不可缺少,而且对食品和菜点的色、香、味、形的构成也起着重要作用。
检查脑动脉的仪器条件中,需要调节的是
己知交流电流i(t)的周期T=1ms,有效值I=0.5A,当t=0时,i=,则它的时间函数描述形式是()。
《(期货经纪合同)指引》《期货交易风险说明书》的内容和格式由()制定。
关于事业部制组织形式的说法,正确的是()。
在会计体系中,凭证号是一个重要的要素,在记账凭证和账簿中都是不可缺少的项目,其作用是()。
根据《农村土地承包法》的规定,耕地的承包期为()。
区县组织文艺演出下乡星火工程,为群众举办为期四个月的演出,你是县文化局负责人,如何开展?
某公司刚发了0.6元的股利,在未来三年以15%的增长率分发股利,三年后则以5%的低增速增长,当前的贴现率为12%,求股票价格。
搞清楚什么是社会主义、怎样建设社会主义,关键是
最新回复
(
0
)