首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
admin
2018-09-20
37
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
(1)A
2
:
(2)A的特征值和特征向量;
(3)A能否相似于对角矩阵,说明理由.
选项
答案
(1)由A=αβ
T
和α
T
β=0,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)αβ
T
=O,即A是幂零矩阵(A
2
=O). (2)利用(1)A
2
=O的结果.设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=λξ. 两端左边乘A,得 A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0,即矩阵A的全部特征值为0. 故由上易知方程组Ax=0的非零解即为A的特征向量.不妨设a
1
≠0,b
1
≠0,有 [*] 则A的对应于特征值0的特征向量为[*]k
1
,…,k
n-1
为不全为零的常数. (3)A不能相似于对角矩阵,因α≠0,β≠0,故A=αβ
T
≠O,r(A)=r≠0(其实r(A)=1).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n一r≠n,故A不能对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/gRW4777K
0
考研数学三
相关试题推荐
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设f(x)连续,证明:
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
用配方法化二次型x1x2+2x2x3为标准形,并写出所用满秩线性变换.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设齐次线性方程组只有零解,则a满足的条件是______.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
随机试题
诊断单纯疱疹病毒性脑炎需与下列疾病鉴别
患者,女性,35岁,诊断为风心病,重度二尖瓣狭窄,突发心悸,呼吸困难,咳粉红色泡沫痰。查体:血压90/70mmHg,端坐呼吸,双肺满布湿啰音,心率155次/min,第一心音强弱不等,节律不齐,给予西地兰0.4mg静注,目的是
A.NADP+B.ADPC.NADPHD.UTPE.FAD直接参与胆固醇生物合成的物质是
甲与乙订立房屋租赁合同,约定租期5年。半年后,甲将该出租房屋出售给丙,但未通知乙。不久,乙以其房屋优先购买权受侵害为由,请求法院判决甲丙之间的房屋买卖合同无效。下列哪一表述是正确的?(2013年卷三第10题)
关于刑事诉讼中查封、扣押、冻结在案财物的处理,下列哪些选项是正确的?
根据呼吸类型的不同,细菌可分为三类,不包括()。
下列选项中,属于存货管理的方法是()。
影响管理宽度的因素主要有()。
短期贷款展期不得超过______。
Lookatthequestionsforthispart.Youwillhearamantalkingabouthisfather.Forquestions24-30,indicatewhicho
最新回复
(
0
)