首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
admin
2018-09-20
78
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
(1)A
2
:
(2)A的特征值和特征向量;
(3)A能否相似于对角矩阵,说明理由.
选项
答案
(1)由A=αβ
T
和α
T
β=0,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)αβ
T
=O,即A是幂零矩阵(A
2
=O). (2)利用(1)A
2
=O的结果.设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=λξ. 两端左边乘A,得 A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0,即矩阵A的全部特征值为0. 故由上易知方程组Ax=0的非零解即为A的特征向量.不妨设a
1
≠0,b
1
≠0,有 [*] 则A的对应于特征值0的特征向量为[*]k
1
,…,k
n-1
为不全为零的常数. (3)A不能相似于对角矩阵,因α≠0,β≠0,故A=αβ
T
≠O,r(A)=r≠0(其实r(A)=1).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n一r≠n,故A不能对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/gRW4777K
0
考研数学三
相关试题推荐
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
已知Aαi=iαi(i=1,2,3),其中α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T.求矩阵A.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
设λ=2是可逆矩阵A的一个特征值,则的一个特征值是
设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明:
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设齐次线性方程组只有零解,则a满足的条件是______.
随机试题
提倡“义理、考据、辞章”的作家是【】
A.清化肃肺B.补肾纳气C.温化宣肺D.补肺固卫哮病发作期属寒哮的治法是
麦芽与山楂的共同主治证是()
一名50岁体质较差的女性患者,十二指肠溃疡穿孔20小时,入院施行穿孔修补术后6天体温38℃,腹痛、腹胀,大便次数增多,有黏液,里急后重,诊断为盆腔脓肿。以下治疗措施哪项是错误的
在稳定类基层材料拌合时,应重点检查结合料的剂量、最佳含水量的控制以及拌合方法及均匀性等。()
依据《劳动合同法》,劳动者的权利有()。
( )是对在中华人民共和国境内车辆、船舶(简称车船)的所有人或者管理人所征收的一种税。
发行人在境内发行股票或者可转换公司债券、证券公司在境内承销证券以及投资者认购境内发行的证券,适用()。
下列关于上海行政、司法概况的说法中,正确的有()。
Thethiefwasfinallycapturedtwomilesawayfromthevillage.
最新回复
(
0
)