首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
admin
2018-07-27
112
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
选项
答案
当a=0时,A=[*]计算可得A的特征值为λ
1
=λ
2
=2,λ
3
=0.解齐次线性方程组(2E-A)x=0,得A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,1,0)
T
,η
2
=(0,0,1)
T
解齐次线性方程组(0E-A)x=0,得A的属于λ
3
=0的线性无关的特征向量为 η
3
=(-1,1,0)
T
易见η
1
,η
2
,η
3
两两正交.将η
1
,η
2
,η
3
单位化得A的标准正交的特征向量为 e
1
=[*](1,1,0)
T
,e
2
=(0,0,1)
T
,e
3
=[*](-1,1,0)
T
取Q=(e
1
,e
2
,e
3
),则Q为正交矩阵. 令x=Qy,得f的标准形为 f(x
1
,x
2
,x
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
解析
转载请注明原文地址:https://kaotiyun.com/show/gXW4777K
0
考研数学三
相关试题推荐
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足f(0)=0及0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于
求下列微分方程的通解:(Ⅰ)y’’-3y’=2-6x;(Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
求微分方程的通解.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
计算行列式|A|=之值.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
已知二次型f(x1,x2,x3)=x12+x22+cx32+2ax1x2+2x1x3经正交变换化为标准形y12+2y32,则a=______.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
已知A,B,C都是行列式值为2的三阶矩阵,则D=________。
随机试题
试述出版物进货的基本流程。
以下属于中度献血不良反应的是
按照“为存款人保密”的原则,下列说法不正确的是()。
凡结账前发现记账凭证正确而登记账簿时发生的错误,可以采用的更正方法是()。
甲上市公司2009年营业收入为6000万元,营业成本为4000万元,营业税金及附加为60万元,销售费用为200万元,管理费用为300万元,财务费用为70万元,资产减值损失为20万元,交易性金融资产公允价值变动收益为20万元,可供出售金融资产公允价值变动收益
与2010年相比,2011年全年粮食种植面积11057万公顷,增加70万公顷:棉花种植面积504万公顷,增加19万公顷;油料种植面积1379万公顷,减少10万公顷:糖料种植面积195万公顷,增加4万公顷;棉花产量660万吨,增产10.7%;油料产量3279
在窗体设计控件组中,代表组合框的图标是
WhenisJim’sbirthday?
Thepolicearedoingallhecantobringthoseresponsibleforthebombingto
Althoughtheenjoymentofcolorisuniversalandcolortheoryhasallkindsofnamestoit,colorremainsaveryemotionalands
最新回复
(
0
)