首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无穷多组解
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无穷多组解
admin
2021-02-25
65
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
令矩阵B=(α
1
,α
2
,α
3
,b+α
3
),证明方程组Bx=α
1
-α
2
有无穷多组解,并求其通解.
选项
答案
因 [*] 故r(α
1
,α
2
,α
3
,b+α
3
)=r(α
1
,α
2
,α
3
,b+α
3
,α
1
-α
2
)=2<4,即非齐次方程组Bx=α
1
-α
2
有无穷多组解. 因 [*] 故η
*
=(1,-1,0,0)
T
为Bx=α
1
-α
2
的一个特解.又 [*] 由于r(α
2
,α
3
)=2,所以[*]的通解为x=k
1
(1,-2,3,0)
T
+k
2
(0,4,-3,-1)
T
,其中k
1
,k
2
为任意常数.故Bx=α
1
-α
2
的通解为 x=k
1
(1,-2,3,0)
T
+k
2
(0,4,-3,-1)
T
+(1,-1,0,0)
T
,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/ga84777K
0
考研数学二
相关试题推荐
a,b取何值时,方程组有解?
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=.试求f(t).
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
随机试题
关于肿瘤生长方式的叙述,哪项是错误的?
马斯洛将人的需要由低级到高级划分为5个层次,最高一层为
下列哪些立交的提法是不对的?()
暂估价是招标人在工程量清单中提供的用于支付必然发生但暂时不能确定价格的材料的单价以及专业工程的金额,应列入()清单。
为了控制客户的费用和投资储蓄.银行从业人员应该建议该客户在银行开设三种类型的账户。这三种类型账户不包括()。
甲欠乙贷款1000万元,其中500万元以房屋作抵押担保,剩余500万元由丙承担连带保证责任。到期后,甲归还了250万元贷款,乙放弃对抵押物的优先受偿,则丙担保人承担的保证责任金额为()。
(2005年国考)近日,有能源专家指出,目前全国不少城市搞“光彩工程”。在当前国内普遍缺电的形势下这是不适宜的。(按照上海电力部门的测算,上海的灯光工程全部开启后,耗电量将达到20万千瓦时,占整个城市总发电量的2%,相当于三峡电厂目前对上海的供电容量。)这
(浙江台州村官2009—31)2,1,9,30,117,()
HarvardprofessorHarveyMansfieldstirredupcontroversyrecentlybycriticizingtheviolentgradeinflationathisinstitution
Iaskedsuccessfulpeoplewhatthesecretoftheirsuccesswas.I【B1】______anearlydiscussionwithavicepresidentofalarge
最新回复
(
0
)