首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知求A的特征值与特征向量,并指出A可以相似对角化的条件.
admin
2020-03-15
98
问题
已知
求A的特征值与特征向量,并指出A可以相似对角化的条件.
选项
答案
由矩阵A的特征多项式[*]得到A的特征值是λ
1
=1—a,λ
2
=a,λ
3
=a+1.由[(1一a)E—A]x=0,[*]得到属于λ
1
=1一a的特征向量是α
1
=k
1
(1,0,1)
T
,k
1
≠0.由(αE—A)x=0,[*]得到属于λ
2
=a的特征向量是α
2
=k
2
(1,1一2a,1)
T
,k
2
≠0.由[(a+1)E—A]x=0,[*]得到属于μ
3
=0+1的特征向量α
2
=k
2
(2—a,一4a,a+2)
T
T,k
2
≠0.如果λ
1
,λ
2
,λ
3
互不相同,即1一a≠a,1一a≠a+1,a≠s+1,即[*]且a≠0,则矩阵A有3个不同的特征值,A可以相似对角化.若[*]即[*],此时A只有一个线性无关的特征向量,故A不能相似对角化.若a=0,即λ
1
=λ
3
=1,此时A只有一个线性无关的特征向量,故A不能相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/ggD4777K
0
考研数学三
相关试题推荐
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤l}。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一l,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
已知二维随机变量(X,Y)的概率密度为试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求Y的概率密度fY(y);
由曲线y=1一(x一1)2及直线y=0围成的图形(如图1—3—1所示)绕y轴旋转一周而成的立体体积V是()
设函数f(x)=在(一∞,+∞)内连续,且=0,则常数a,b满足()
设f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0。证明:对于任意的x∈(一1,0)∪(0,1),存在唯一的0(x)∈(0,1),使f(x)=f(0)+xf'(θ(x)x)成立;
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量。
齐次方程组有非零解,则λ=____________。
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数收敛,则也收敛.证明你的判断.
随机试题
马克思对存在的认识,包括三个阶段,即()
有任免权的领导机关,按照人事管理权限对人才授予一定职位的制度是【】
设备进人安装现场前,( )要审查设备报审表及有关技术资料,符合要求则予以签认,设备可进入安装现场。
对于收款凭证,通常选择()限制类型。
( )是金融工具在必要时迅速转变为现金而不致遭受损失的能力。
下列说法错误的是()。
已知函数y=e2χ+(χ+1)eχ是二阶常系数线性非齐次方程y〞+ay′+by=ceχ的一个特解,试确定常数a=_______,b=_______,c=_______及该方程的通解为_______.
Insomewaystheyareamarketers’dream.Theyhavebillionsofdollarsinincome—andspendmostofit.Althoughtheirindivid
We______aswellleaveheretoday.
A、Theyarebuilttoproducemorefruitsandwheat.B、Theyarenaturallyair-conditioningandwater-savinghouses.C、Mostofgree
最新回复
(
0
)