首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知求A的特征值与特征向量,并指出A可以相似对角化的条件.
admin
2020-03-15
68
问题
已知
求A的特征值与特征向量,并指出A可以相似对角化的条件.
选项
答案
由矩阵A的特征多项式[*]得到A的特征值是λ
1
=1—a,λ
2
=a,λ
3
=a+1.由[(1一a)E—A]x=0,[*]得到属于λ
1
=1一a的特征向量是α
1
=k
1
(1,0,1)
T
,k
1
≠0.由(αE—A)x=0,[*]得到属于λ
2
=a的特征向量是α
2
=k
2
(1,1一2a,1)
T
,k
2
≠0.由[(a+1)E—A]x=0,[*]得到属于μ
3
=0+1的特征向量α
2
=k
2
(2—a,一4a,a+2)
T
T,k
2
≠0.如果λ
1
,λ
2
,λ
3
互不相同,即1一a≠a,1一a≠a+1,a≠s+1,即[*]且a≠0,则矩阵A有3个不同的特征值,A可以相似对角化.若[*]即[*],此时A只有一个线性无关的特征向量,故A不能相似对角化.若a=0,即λ
1
=λ
3
=1,此时A只有一个线性无关的特征向量,故A不能相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/ggD4777K
0
考研数学三
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一l,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16与32之间的概率α=___________。(Φ(3)=0.9987,Φ(1)=0.8413)
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=一l,0,1),Y的概率密度为fY(y)=记Z=X+Y。求z的概率密度fZ(z)。
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求Y的概率密度fY(y);
D是圆周x2+y2=Rx所围成的闭区域,则=__________。
设α1=(6,一1,1)T与α2=(一7,4,2)T是线性方程组的两个解,则此方程组的通解是____________。
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
已知求常数a≥0与b的值.
(93年)设f(χ)=∫0sinχsin(t2)dt,g(χ)=χ3+χ4,则当χ→0时,f(χ)是g(χ)的
设f(u)为连续函数,D是由y=1,x2一y2=1及y=0所围成的平面闭区域,则
随机试题
Thisspecialschoolacceptsalldisabledstudents,______educationallevelandbackground.
与颈椎及颈髓扫描参数不符的是
老年妇女,在过马路时,不慎跌倒,然后勉强爬起,但主诉腰痛,难于直立步行。体检:L5腰椎有轻压痛。该病例如明确诊断急需做何种检查
根据流变学性质,可将非牛顿流体的流动分为()
患儿男,5岁,猩红热病后20天,出现眼睑水肿,尿呈茶色,血压130/100mmHg,护士考虑该患儿可能发生了
下列关于工程质量检验评定制度的叙述中,不正确的是()。
会计职业道德的调整对象是()。
某普通住宅项目的建设单位委托招标代理机构,采用公开招标的方式办理该项目的招标事宜。公布招标信息后,在投标截止时间内,收到A、B、C、D、E、F共6家施工企业的投标文件,施工企业G的投标文件晚了一天送,已向招标人作出书面解释。各施工企业均按招标文件的规定提供
脑科学的研究表明,在人脑的发育中存在“关键期”,即人在发展过程中,某一方面在某一阶段发展得最快,比如,3岁以前是动作发展的“关键期”,1~3岁是语言发展的“关键期”,4岁左右是感知图形的“关键期”。在这一时期,脑在结构和功能上都具有很强的适应和重组的能力,
Hemusthavehadanaccident,orhe______herethen.
最新回复
(
0
)