首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑二元函数的下面4条性质 (Ⅰ)f(x,y)在点(x0,y0)处连续; (Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续; (Ⅲ)f(x,y)在点(x0,y0)处可微; (Ⅳ)f(x,y)在点(x0,y0)处的两个偏
考虑二元函数的下面4条性质 (Ⅰ)f(x,y)在点(x0,y0)处连续; (Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续; (Ⅲ)f(x,y)在点(x0,y0)处可微; (Ⅳ)f(x,y)在点(x0,y0)处的两个偏
admin
2020-03-08
15
问题
考虑二元函数的下面4条性质
(Ⅰ)f(x,y)在点(x
0
,y
0
)处连续;
(Ⅱ)f(x,y)在点(x
0
,y
0
)处的两个偏导数连续;
(Ⅲ)f(x,y)在点(x
0
,y
0
)处可微;
(Ⅳ)f(x,y)在点(x
0
,y
0
)处的两个偏导数存在.
若用P
Q表示可由性质P推出性质Q,则有( ).
选项
A、
B、
C、
D、
答案
A
解析
f(x,y)在点(x
0
,y
0
)处的两个偏导数连续,则f(x,y)在点(x
0
,y
0
)处可微,f(x,y)在点(x
0
,y
0
)处可微,则f(x,y)在点(x
0
,y
0
)处连续,所以
,(A)为答案.
转载请注明原文地址:https://kaotiyun.com/show/glS4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放人这十个空盒中,设每个球放人任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:C={某个指定的盒子不空}.
若正项级数un收敛,证明:收敛.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X—Y。求Z的概率密度f(z;σ2)。
求幂级数的收敛域及和函数.
计算,其中Σ为曲面z=的上侧,a为大于零的常数。
设有两个非零矩阵A=[b1,b2,…,an]T,B=[b1,b2,…,bn]T.(1)计算ABT与ATB;(2)求矩阵ABT的秩r(ABT);(3)设C=E-ABT,其中E为n阶单位矩阵.证明:
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
随机试题
肉芽组织中具吞噬能力的细胞有
某公司2005年资产负债表相关数据为存货期初数为4000万,期末数为5000万,流动负债期初为3000万,期末为2500万,期初速动比率为0.8,期末流动比率为1.8,总资产周转率为1.4,总资产为20000万。计算该公司流动资产期初数和期末数,
肾脏是体内重要的内分泌器官,下列哪种内分泌激素不由肾脏所分泌?
选出与MRI信号强度密切相关的细胞
全科医疗的核心服务是
A、果糖二磷酸酶-1B、6-磷酸果糖激酶-1C、HMGCoA还原酶D、磷酸化酶E、HMGCOA合(成)酶参与酮体和胆固醇合成的酶是
创业计划书应具备下列哪些内容()①创业的种类;②资金规划;③人力资源配置;④竞争力分析;⑤目标市场。
生产越发展,物资越丰富,流通对生产的反作用越不明显。()
函属于()。
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
最新回复
(
0
)