首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证: 1≤∫02(x)dx≤3.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证: 1≤∫02(x)dx≤3.
admin
2017-07-26
28
问题
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证:
1≤∫
0
2
(x)dx≤3.
选项
答案
由拉格朗日微分中值定理得 存在点ξ
1
∈(0,x),使得f(x)一f(0)=f’(ξ
1
)x, 存在点ξ
2
∈(x,2),使得f(x)一f(2)=f’(ξ
2
)(x一2). 又|f’(x)|≤1,所以有 |f(x)一f(0)|≤x→1一x≤f(x)≤1+x,x∈[0,1], |f(x)一f(2)|≤2一x→x一1≤f(x)≤3一x,x∈[1,2]. 由定积分的性质可知 ∫
0
2
f(x)dx≥∫
0
1
(1一x)dx+∫
1
2
(x一1)dx=1, ∫
0
2
f(x)dz≤∫
0
1
(1+x)dx+∫
1
2
(3一x)dx=3. 故 1≤∫
0
2
f(x)dx≤3. 或 f(x)=f(x)—f(b)=f’(ξ)(x一b) (f(b)=0). 然后,根据题意进行不等式放缩. 若有f(a)=f(b)=0,则f(x)可表示为 f(x)=f(x)=f(x)一f(a)=f’(ξ
1
)(x一a), f(x)=f(x)=f(x)一f(a)=f’(ξ
2
)(x一a).
解析
先应用拉格朗日微分中值定理估计f(x)的值域范围,再用积分性质估计定积分.
转载请注明原文地址:https://kaotiyun.com/show/guH4777K
0
考研数学三
相关试题推荐
[*]
曲线在点(1,1,3)处的切线方程为_____.
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
设函数f(x)在点x。处有连续的二阶导数,证明
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设函数f(x)在[a,b]上满足a≤f(x)≤b,|fˊ(x)|≤q<1,令un=f(un-1),n=1,2,3,…,uo∈[a,b],证明:
设f(x)为连续函数.且x2+y2+z2=∫xyf(x+y-t)dt,则=______
证明:当x>0时,arctanx+。
随机试题
为审美主体、审美对象的存在提供现实依据的是()
患儿,男,6岁。其家长诉患儿喜眯眼视远,视力:右0.4,左0.l。眼前、后节检查未发现明显异常,如睫状肌麻痹下验光,需用哪种滴眼剂
三相气雾剂一般为()
环境承载力原理对城市发展建设的影响主要体现在()方面上。
根据下面材料,回答下列题目:王军是首钢的一名轧钢师,每月按时缴纳住房公积金。现在,其打算购买一套评估价为50万元的自住普通住房,拟在建行申请个人住房公积金贷款。假设王军目前离法定退休年龄还剩30年,其名下的住房公积金本息余额为6000元,上个月公积金汇
交易所交易资金清算流程包括()。
一位饭店的服务员,月薪为3000元。按照我国个人所得税法,其适用税率为10%,速算扣除数为25元,据此,其应缴纳个人所得税()元。
一般纳税人注销或被取消辅导期一般纳税人资格,转为小规模纳税人时,以下说法正确的有()。
劳务报酬所得税的税率是()。
比较评价比进步评价更符合学生发展的规律。()
最新回复
(
0
)