首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证: 1≤∫02(x)dx≤3.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证: 1≤∫02(x)dx≤3.
admin
2017-07-26
76
问题
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证:
1≤∫
0
2
(x)dx≤3.
选项
答案
由拉格朗日微分中值定理得 存在点ξ
1
∈(0,x),使得f(x)一f(0)=f’(ξ
1
)x, 存在点ξ
2
∈(x,2),使得f(x)一f(2)=f’(ξ
2
)(x一2). 又|f’(x)|≤1,所以有 |f(x)一f(0)|≤x→1一x≤f(x)≤1+x,x∈[0,1], |f(x)一f(2)|≤2一x→x一1≤f(x)≤3一x,x∈[1,2]. 由定积分的性质可知 ∫
0
2
f(x)dx≥∫
0
1
(1一x)dx+∫
1
2
(x一1)dx=1, ∫
0
2
f(x)dz≤∫
0
1
(1+x)dx+∫
1
2
(3一x)dx=3. 故 1≤∫
0
2
f(x)dx≤3. 或 f(x)=f(x)—f(b)=f’(ξ)(x一b) (f(b)=0). 然后,根据题意进行不等式放缩. 若有f(a)=f(b)=0,则f(x)可表示为 f(x)=f(x)=f(x)一f(a)=f’(ξ
1
)(x一a), f(x)=f(x)=f(x)一f(a)=f’(ξ
2
)(x一a).
解析
先应用拉格朗日微分中值定理估计f(x)的值域范围,再用积分性质估计定积分.
转载请注明原文地址:https://kaotiyun.com/show/guH4777K
0
考研数学三
相关试题推荐
设y=y(x)是由方程y2+xy+x2+x=0所确定的满足y(一1)=1的隐函数,则
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
将函数展开成x的幂级数.
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是().
证明:当x>0时,arctanx+。
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
随机试题
抽油机井资料录取要求是()。
我国的对外贸易统计形成的统计制度有()
下面与胸部扫描技术无关的是
BCWS为计划完成工作预算成本,下列各项中除()之外,BCWS在整个工作实施过程应保持不变。
()同时以股票、债券等为投资对象,通过对不同金融工具进行投资实现投资收益与风险的平衡。
人力资源规划的主要目标是()。
《文物保护法》规定,不可移动的文物已经全部损坏的,应当实施遗址保护,不得在原址上重建。()
下列()退役士兵由国家供养终身。
使用心理测验时把握不正确的是()。
IP地址中保留不用的一类是()。
最新回复
(
0
)