首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明不等式:χarctanχ≥ln(1+χ2).
证明不等式:χarctanχ≥ln(1+χ2).
admin
2019-08-23
116
问题
证明不等式:χarctanχ≥
ln(1+χ
2
).
选项
答案
令f(χ)=χarctanχ-[*]ln(1+χ
2
),f(0)=0. 得f′(χ)=[*]+arctanχ-[*]=arctanχ=0,得χ=0, 因为f〞(χ)=[*]>0,所以χ=0为f(χ)的极小值点,也为最小值点,而f(0)=0, 故对一切的χ,有f(χ)≥0,即χarctanχ≥[*]ln(1+χ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/gzA4777K
0
考研数学二
相关试题推荐
设线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0),且β1=(一1,1,1)T,β2=(1,1,一1)T是该方程组的两个解,写出此方程组的通解.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设一质点在单位时间内由点A从静止开始做直线运动至点B停止,A,B两点间距离为1,证明:该质点在(0,1)内总有某一时刻的加速度的绝对值不小于4.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
随机试题
下列哪种情况最能确定肺结核病的诊断
白塞病针刺实验阳性是指
酶能加速化学反应速度是由于
隐蔽工程验收应由()来组织。
普通合伙人死亡,继承人具备完全民事行为能力的,按照合伙协议的约定或者经全体合伙人一致同意,可以取得普通合伙人资格。()
阅读下面某版本历史教材中有关大运河的表述,回答问题。为了加强南北交通,巩固隋王朝对全国的统治,隋炀帝利用已有的经济实力,征发几百万人,从605年起,开通了一条纵贯南北的大运河。大运河以洛阳为中心,北达涿郡,南至余杭,全长两千多公里,是古代世界最长
学习迁移
教师劳动对象的差异性导致了教师劳动具有()。
ProfessorJohnsonissaid______somesignificantadvanceinhisresearchinthepastyear.
A、Workmatesseldomgiveadvice.B、Wedon’thavegoodopportunities.C、Webelieveinourselvesmorethanothers.D、Weareafraid
最新回复
(
0
)