首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2018-11-11
81
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令A[*],因为α
1
,α
2
,α
m
与β正交,所以Aβ=0,即β为方程组Ax=0的解,而α
1
,α
2
,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0 因为α
1
,α
2
,…,α
n
与β正交,所以k
0
β
T
β=0,即k
0
|β|
2
=,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/cxj4777K
0
考研数学二
相关试题推荐
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求:A2;
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,fx’(0,0)=2,fy’(0,y)=一3以及fxx"(x,y)=y,fxy"(x,y)=x+y,求f(x,y)的表达式.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则()
设有8只球,其中自球和黑球各4只,从中任取4只放人甲盒,余下的4只放入乙盒,然后分别在两盒中任取1只球,颜色正好相同.试问放人甲盒的4只球中有几只白球的概率最大?
设A和B为两个随机事件,定义随机变量证明X与Y不相关的充分必要条件是A和B相互独立.
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)c=0()
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求在基(I)和基(Ⅱ)下有相同坐标的全体向量.
设向量组(I):α1=(2,4,一2)T,α2=(一1,a一3,1)T,α3=(2,8,b一1)T;(Ⅱ):β1=(2,b+5,一2)T,β2=(3,7,a一4)TT,β3=(1,2b+4,一1)T.问.(1)a,b取何值时,r(I)=r(Ⅱ),且(I)与
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
(1)设f(t)=∫1tdχ,求∫01t2f(t)dt(2)设f(χ)=∫0χecostdt,求∫0πf(χ)cosχdχ.
随机试题
股份有限公司在召开股东大会年会的30日以前将财务会计报告置备于本公司,供股东查阅。()
下属哪种方法不能增加药物溶解度
下列关于现金流量的说法中,正确的是()。
【2010年真题】在选择价值工程对象时,先求出分析对象的成本系数、功能系数,然后得出价值系数,当分析对象的功能与成本不相符时,价值低的选为价值工程研究对象的方法称为()。
某施工单位施工防波堤工程,堤长800m,堤头为沉箱直立式结构,堤身为抛石斜坡堤,扭王字块护面,施工组织设计编制完成后,因业主和监理催促,项目经理审查后直接报给了监理和业主。施工中检查发现,扭王字块摆放中竖杆全部整齐排列朝上,经询问,施工单位说,如此排列观瞻
对关联交易审查时,审计人员应审查的主要内容是()。
在合理情绪疗法修通阶段改变不合理信念最常用的技术是()。
产品:广告:畅销
使用常用文字编辑工具编辑正文时,为改变该文档的文件名,常选用(1)。命令;在打印预览方式下,单击(2)按钮可返回编辑文件;将正文中所有“Computer”改写为“计算机”,常选用(3)命令。
Fromthehealthpointofviewwearelivinginamarvelousage.Weareimmunizedfrombirthagainstmanyofthemostdangerousd
最新回复
(
0
)