首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,其中α为n维非零列向量.证明: 当α是单位向量时A为不可逆矩阵.
设A=E-ααT,其中α为n维非零列向量.证明: 当α是单位向量时A为不可逆矩阵.
admin
2018-05-25
48
问题
设A=E-αα
T
,其中α为n维非零列向量.证明:
当α是单位向量时A为不可逆矩阵.
选项
答案
当α是单位向量时,由A
2
=A得r(A)+r(E-A)=n,因为E-A=αα
T
≠0,所以r(E-A)≥1,于是r(A)≤n-1<n,故A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/hEW4777K
0
考研数学三
相关试题推荐
设数列{an}单调减少,(n=1,2,…)无界,则幂级数an(x-1)n的收敛域为()
二重积分ln(x2+y2)dxdy的符号为_________.
设函数f(x)在[0,1]上二阶可导,且f(0)=fˊ(0)=fˊ(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|fˊˊ(ξ)|≥4.
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
随机试题
Theappealofadvertisingtobuyingmotivescanhavebothnegativeandpositiveeffects.Consumersmaybeconvincedtobuyapro
参考了国内外学者的研究成果,把学前儿童的情绪行为异常分为情绪障碍、品行障碍、正常心理机能发展迟缓而产生的损害、不良习惯这四个方面的人是()
红、橙、黄色使人产生暖的感觉,绿、青、蓝色使人产生冷的感觉,这种现象是()
下列哪种情况行融合后,对颈椎旋转功能影响最大
患儿,1岁,因食欲差,母乳少,以米糊、稀饭喂养,未添加其他辅食,诊断为营养不良Ⅰ度。最先出现的症状是
由于房地产是不动产,完成房地产居间、代理业务必不可少的环节是()。
梁和板为典型的()构件。
教师职业道德养成的基本原则有()。
期末结转后无余额的账户有()。
有如下类定义:classBase{public:inta;protected:intb;private:intc;};classDe
最新回复
(
0
)