首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶矩阵A=,求A的特征值和特征向量。
n阶矩阵A=,求A的特征值和特征向量。
admin
2020-03-16
65
问题
n阶矩阵A=
,求A的特征值和特征向量。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=[λ—1一(n—1)b][λ一(1—b)]
n-1
, 则A的特征值为1+(n一1)b和1—b(n—1重)。 ①当b=0时,A的特征值是1(n重),任意n维非零列向量均为A的特征向量。 ②当b≠0时,对方程组[(1+n一1)bE—A]x=0的系数矩阵作初等行变换得 [*] 解得上述方程组的基础解系为ξ
1
=(1,1,1,…,1)
T
。所以A的属于λ=1+(n一1)b的全部特征向量为 kξ
1
=k(1,1,1,…,1)
T
,其中k≠0。 对方程组[(1—b)E—A]x=0的系数矩阵作初等行变换得 [*] 解得上述方程组的基础解系为 ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
, 所以A的属于λ=1一b的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
是不全为零的常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/hI84777K
0
考研数学二
相关试题推荐
求下列不定积分:
求摆线L:(a>0)的第一拱绕x轴旋转一周所得旋转体的体积.
证明:,其中a>0为常数.
设二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。写出二次型的矩阵表达式;
设三阶实对称矩阵A的各行元素之和都为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次线性方程组AX=0的解.求A及[A一(3/2)E]6.
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求a;
[2005年]已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
设.问当k为何值时,函数f(x)在其定义域内连续?为什么?
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设随机变量x的概率密度f(x)=,求(1)常数k;(2)若使P{X≥a}=0.4,求常数a的取值范围;(3)求Y=|x|的概率密度fY(y).
随机试题
葡萄胎随访时必须进行的检查是
上颌磨牙进行全冠修复时,为避免食物嵌塞应有哪种观念A.生物力学B.生物材料学C.动态D.静态E.形态学
患儿,10个月,因发热,咳嗽,惊厥来院就诊,体检:体温39.8℃,咽充血,前囟平。该患儿惊厥的原因可能是
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
读图文材料。葡萄酒用新鲜葡萄或葡萄汁酿造而成。近年来。我国葡萄酒产量及消费量快速增长。据图文材料分析。影响葡萄酒产业布局最主要的一组区位因素是()。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
Imeanttogiveyouthisbooktoday,butIforgot.
A、Peoplecansurviveifluckyenough.B、Thechanceisverysmall.C、Theycanbeprevented.D、Thepossibilitycanbeignored.B由句
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
Itisessentialtobuildupyourconfidence____________(如果你想在一生中有所成就的话).
最新回复
(
0
)