首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
admin
2019-05-10
66
问题
[2011年] 微分方程y′+y=e
-x
cox满足条件y(0)=0的解为.y=________.
选项
答案
利用式(1.6.1.2)求出通解,再由y(0)=0得特解,也可直接利用式(1.6.1.3)求解.因方程右端含e
-x
因子,还可用凑导数法求之. 解一 注意到y′+y=y′+(x)′y=e
-x
cosx,在其两边乘上e
x
得到 y′e
x
+e
x
x′y=e
x
e
-x
cosx=cosx, 即(ye
x
)′=cosx. 两边积分得到 ye
x
=∫cosxdx+C=sinx+C, 即 y=e
-x
sinx+Ce
-x
. 由y(0)=0,得到c=0,故所求特解为y=e
-x
sinx. 解二 所求的特解为满足初值问题[*]的解,其解由式(1.6.1.3)直接得到,其中P(x)=1,Q(x)=e
-x
cosx,故 y=e
-∫
0
x
P(x)dx
(∫
0
x
Q(x)e
∫
0
x
P(x)dx
dx+0)=e
-∫
0
x
dx
(∫
0
x
e
-x
cosxe
∫
0
x
dx
dx) =e
-x
(∫
0
x
e
-x
e
x
cosx dx)=e
-x
∫
0
x
cosxdx=e
-x
sinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hNV4777K
0
考研数学二
相关试题推荐
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
若f(χ)在χ=0的某邻域内二阶连续可导,且=1,则下列正确的是().
求不定积分∫χ3dχ.
设函数f(χ)在[0,2π]上连续可微,f′(χ)≥0,证明:对任意正整数n,有|∫02πf(χ)sinnχdχ|≤[f(2π)-f(0)].
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组Ax一6的通解.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
随机试题
A.前纵隔B.前上纵隔C.肝纵隔D.后上纵隔原发性神经源性纵隔肿瘤多位于
合成HDL的部位是
男性,66岁,突发剑突下疼痛10h,阵发加重,伴寒战、高热、恶心、呕吐。查体:巩膜黄染,体温39.8℃,血压90/60mmHg,心率128次/分。全腹压痛,以剑突下为著,伴有肌紧张和轻度反跳痛,血WBC28×109/L,尿胆红素(+),最佳的手术方式是
回阳救急汤除回阳救急外,还具有的功用是
输血不是作为主要传播途径的病毒性疾病为
土的颗粒大小叫土的粒度成分。()
中国《宪法》规定,地方行政建制和行政区划分:为()级。
根据《刑法》及有关规定,关于老年人犯罪适用强制措施和量刑的说法,正确的是()。(2012年)
已知=-,求a,b的值.
Bloggingisapastimeformany,evenalivelihoodforafew.Forsome,itbecomesanobsession(使人痴迷的事物).Suchbloggersoften【B1
最新回复
(
0
)