首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
admin
2019-05-10
76
问题
[2011年] 微分方程y′+y=e
-x
cox满足条件y(0)=0的解为.y=________.
选项
答案
利用式(1.6.1.2)求出通解,再由y(0)=0得特解,也可直接利用式(1.6.1.3)求解.因方程右端含e
-x
因子,还可用凑导数法求之. 解一 注意到y′+y=y′+(x)′y=e
-x
cosx,在其两边乘上e
x
得到 y′e
x
+e
x
x′y=e
x
e
-x
cosx=cosx, 即(ye
x
)′=cosx. 两边积分得到 ye
x
=∫cosxdx+C=sinx+C, 即 y=e
-x
sinx+Ce
-x
. 由y(0)=0,得到c=0,故所求特解为y=e
-x
sinx. 解二 所求的特解为满足初值问题[*]的解,其解由式(1.6.1.3)直接得到,其中P(x)=1,Q(x)=e
-x
cosx,故 y=e
-∫
0
x
P(x)dx
(∫
0
x
Q(x)e
∫
0
x
P(x)dx
dx+0)=e
-∫
0
x
dx
(∫
0
x
e
-x
cosxe
∫
0
x
dx
dx) =e
-x
(∫
0
x
e
-x
e
x
cosx dx)=e
-x
∫
0
x
cosxdx=e
-x
sinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hNV4777K
0
考研数学二
相关试题推荐
设f(χ)=求f′(χ)并讨论f′(χ)在χ=0处的连续性.
证明:,其中a>0为常数.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设y=y(χ)由χ2y2+y=1(y>0)确定,求函数y=y(χ)的极值.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
求微分方程χy=χ2+y2满足条件y|χ=e=2e的特解.
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
I(χ)=在区间[-1,1]上的最大值为_______.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)