首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
[2011年] 微分方程y′+y=e-xcox满足条件y(0)=0的解为.y=________.
admin
2019-05-10
101
问题
[2011年] 微分方程y′+y=e
-x
cox满足条件y(0)=0的解为.y=________.
选项
答案
利用式(1.6.1.2)求出通解,再由y(0)=0得特解,也可直接利用式(1.6.1.3)求解.因方程右端含e
-x
因子,还可用凑导数法求之. 解一 注意到y′+y=y′+(x)′y=e
-x
cosx,在其两边乘上e
x
得到 y′e
x
+e
x
x′y=e
x
e
-x
cosx=cosx, 即(ye
x
)′=cosx. 两边积分得到 ye
x
=∫cosxdx+C=sinx+C, 即 y=e
-x
sinx+Ce
-x
. 由y(0)=0,得到c=0,故所求特解为y=e
-x
sinx. 解二 所求的特解为满足初值问题[*]的解,其解由式(1.6.1.3)直接得到,其中P(x)=1,Q(x)=e
-x
cosx,故 y=e
-∫
0
x
P(x)dx
(∫
0
x
Q(x)e
∫
0
x
P(x)dx
dx+0)=e
-∫
0
x
dx
(∫
0
x
e
-x
cosxe
∫
0
x
dx
dx) =e
-x
(∫
0
x
e
-x
e
x
cosx dx)=e
-x
∫
0
x
cosxdx=e
-x
sinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hNV4777K
0
考研数学二
相关试题推荐
求二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩,正负惯性指数p,q.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
求常数m,n,使得=3.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
求微分方程(1-χ2)y〞-χy′=0的满足初始条件y(0)=0,y′(0)=1的特解.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
随机试题
下列哪种炎性介质不具有阳性趋化作用
若函数y=f(x)在x=x0处取得极值,则fˊ(x0)______.
患儿女,10个月。奶粉喂养,未加任何辅食。近2个月来食欲差、面色苍白,精神不振,体重6.0kg,皮下脂肪0.3cm。患儿的首优护理诊断是
临时存款账户应根据有关开户证明文件确定的期限或存款人的需要确定其有效期限,最长不得超过()。
根据技术来源的不同,可将企业的技术创新战略分为()。
胆汁主要是对()进行消化和吸收。
武术:拳击
中国的网络文化市场在国际上有着巨大的吸引力,尤其在年轻、时尚、流行的消费层面上,其市场潜力是举世瞩目的。网络不仅把人类带进一个新的传播时代,而且把人类带进一个新的经济时代,在众多与网络相关的新兴产业中,网络文化产业是其中最富有生机和最引人注目的一部分。这
舒曼的音乐评论。
Therewasabigholeintheroadwhich____________(耽搁了路上交通).
最新回复
(
0
)