首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有线性方程组 (1)证明:当a1,a2,a3,a4两两不等时,此方程组无解; (2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设有线性方程组 (1)证明:当a1,a2,a3,a4两两不等时,此方程组无解; (2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
admin
2016-04-11
45
问题
设有线性方程组
(1)证明:当a
1
,a
2
,a
3
,a
4
两两不等时,此方程组无解;
(2)设a
1
=a
3
=k,a
2
=a
4
=一k(k≠0)时,β
1
=(一1,1,1)
T
,β
2
=(1,1,一1)
T
是方程组的两个解,写出此方程组的通解.
选项
答案
(1)当1
1
,1
2
,1
3
,1
4
两两不等时,增广矩阵的行列式(为一范德蒙行列式)[*]=4,但系数矩阵的秩不大于3,故方程组无解. (2)此时有r(A)=[*]=2,故方程组有无穷多解,对应齐次线性方程组Ax=0的基础联系含3一r(A)=3—2=1个解向量,由于A(β
1
—β
2
)=Aβ
1
—Aβ
2
=0,所以,β
1
—β
2
=(一2,0,2)
T
或ξ=(1,0,一1)
T
就是Ax=0的一个基础解系,故原方程组的通解为x=β
1
+cξ=(一1,1,1)
T
+c(1,0,一1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hNw4777K
0
考研数学一
相关试题推荐
设函数f(x)(x≥0)可微,且f(x)>0,将曲线y=f(x),x=1,x=a(a>1)及x轴所围成的平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)],若.求f(x).
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明:
设f(x)在区间[a,b]上二阶可导且f"(x)≥0,证明:.
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设螺线r=θ,0≤θ≤2π与极轴所围区域的面积为A,则A=()
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
二阶微分方程y’’=e2y,满足条件y(0)=0,y’(0)=1的特解是y=________.
设f(x,y)在区域0≤x≤1,0≤y≤1上连续,且f(0,0)=-1,计算
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)