首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有线性方程组 (1)证明:当a1,a2,a3,a4两两不等时,此方程组无解; (2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设有线性方程组 (1)证明:当a1,a2,a3,a4两两不等时,此方程组无解; (2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
admin
2016-04-11
30
问题
设有线性方程组
(1)证明:当a
1
,a
2
,a
3
,a
4
两两不等时,此方程组无解;
(2)设a
1
=a
3
=k,a
2
=a
4
=一k(k≠0)时,β
1
=(一1,1,1)
T
,β
2
=(1,1,一1)
T
是方程组的两个解,写出此方程组的通解.
选项
答案
(1)当1
1
,1
2
,1
3
,1
4
两两不等时,增广矩阵的行列式(为一范德蒙行列式)[*]=4,但系数矩阵的秩不大于3,故方程组无解. (2)此时有r(A)=[*]=2,故方程组有无穷多解,对应齐次线性方程组Ax=0的基础联系含3一r(A)=3—2=1个解向量,由于A(β
1
—β
2
)=Aβ
1
—Aβ
2
=0,所以,β
1
—β
2
=(一2,0,2)
T
或ξ=(1,0,一1)
T
就是Ax=0的一个基础解系,故原方程组的通解为x=β
1
+cξ=(一1,1,1)
T
+c(1,0,一1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hNw4777K
0
考研数学一
相关试题推荐
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设,求Aβ.
设f(x)是二阶常系数非齐次线性微分方程y"+py‘+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,()。
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex-1|,证明|a1+2a2+…+nan|≤1.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设D为有界闭区域,z=f(x,y)在D上二阶连续可导,且在区域D内满足:,则()。
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
随机试题
最高人民法院《关于适用中有关举证时限的规定的通知》中规定了需要重新确定举证期限的情况,以下表述错误的是()。
患者,男性,40岁。主因突发剧烈头痛3小时,伴呕吐,查体:体温37.3℃,血压140/80mmHg,颈抵抗,Kemig征(+)。诊断首先考虑
患者,男,14岁。前牙Ⅲ度深覆牙合,左侧第二磨牙正锁牙合,左上第二磨牙颊向倾斜,左下第二磨牙舌向倾斜,四个第三磨牙发育正常此患者磨牙锁牙合矫治的支抗类型为
关于PACS的网络及通信系统叙述错误的是
医院自配制剂检验原始记录的保存时间是
鉴别肺炎链球菌与甲型链球菌的试验是
色甘酸钠的临床给药途径是
根据刑事法律制度的规定,下列各项中,不适用“社区矫正”制度的是()。
1Thebannersarepacked,theticketsbooked.Theglitterandwhiteoverallshavebeenbought,thegasmasksjustfitandth
NaturalandSyntheticRubberPeoplegetnaturalrubberfromrubbertrees/asawhite,milkyliquid,whichiscalledlatex.
最新回复
(
0
)