首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列结论正确的是 ( )
下列结论正确的是 ( )
admin
2018-09-20
34
问题
下列结论正确的是 ( )
选项
A、z=f(x,y)在点(x
0
,y
0
)的某邻域内两个偏导数存在,则z=f(x,y)在点(x
0
,y
0
)处连续
B、z=f(x,y)在点(x
0
,y
0
)的某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)处两个偏导数存在
C、z=f(x,y)在点(x
0
,y
0
)的某邻域内两个偏导数存在且有界,则z=f(x,y)在点(x
0
,y
0
)处连续
D、z=f(x,y)在点(x
0
,y
0
)的某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)该邻域内两个偏导数有界
答案
C
解析
二元函数的连续性与偏导数之间没有必然的联系.设在(x
0
,y
0
)的某邻域U内,对于任意(x,y)∈U有|f
x
’(x,y)|≤M,|f
y
’(x,y)|≤M(M为正常数).
由微分中值定理,
|f(x,y)一f(x
0
,y
0
)|≤|f(x,y)一f(x,y
0
)|+|f(x,y
0
)一f(x
0
,y
0
)|
=|f
y
’(x,y
0
+θ
1
△y).△y|+|f
x
’(x
0
+θ
2
△x,y
0
).△x|
≤M(|△x|+|△y|).
这里△x=x—x
0
,△y=y—y
0
,0<θ
1
,θ
2
<1.
当
,有△x→0,△y→0,必有
|f(x,y)一f(x
0
,y
0
)|≤M(|△x|+|△y|)→0,
故f(x,y)在点(x
0
,y
0
)处连续.
转载请注明原文地址:https://kaotiyun.com/show/hRW4777K
0
考研数学三
相关试题推荐
证明:aretanx=(x∈(-∞,+∞)).
已知A=能对角化,求An.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
An×m=(α1,α2,…,αn),Bm×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设an=1+—lnn(n=1,2,…),证明{an}收敛。
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
(05年)设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
随机试题
下列除哪项外均是滑石的主治病证()
地震现场,一工人左腰及下肢被倒塌之砖墙压住,震后6小时救出,4小时送抵医院。诉口渴,尿少,呈暗红色。检查:脉搏120次/min,血压95/70mmHg,左下肢明显肿胀,皮肤有散在淤血斑及水疱,足背动脉搏动较健侧弱,趾端凉,无骨折征
耕地占用税以县级行政区域为单位,人均耕地不超过1亩的地区,每平方米征收()元。
2003年1月,甲、乙、丙共同设立一合伙企业。合伙协议约定:甲以现金人民币5万元出资,乙以房屋作价人民币8万元出资,丙以劳务作价人民币4万元出资;各合伙人按相同比例分配盈利、分担亏损。合伙企业成立后,为扩大经营,于2003年6月向银行贷款人民币5万元,期限
劳务派遣单位的出现是()的必然结果。
俄国画家康定斯基的著作《论艺术中的精神》和《点线面》,奠定了__________的理论基础。另一俄国画家__________创建的至上主义,属于几何抽:象的范畴。奠定了几何抽象主义理论基础和在艺术实践上有重要贡献的是荷兰画家__________创建的”__
结合吉林省实际谈如何解放思想。
运用问答法确定学生是否理解所学知识时,教师要求学生回答问题应()。
在批评心理学中,人们把批评的内容夹在两个表扬之中从而使受批评者愉快地接受批评的现象,称之为三明治效应。根据以上定义,下列做法运用了三明治效应的是()。
在Windows命令行窗口中,运行(65)命令后得到如下图所示的结果,该命令通常用以(66)。
最新回复
(
0
)