首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,五)设p=p(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
(2001年试题,五)设p=p(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
admin
2021-01-19
63
问题
(2001年试题,五)设p=p(x)是抛物线
上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算
的值.(在直角坐标系下曲率公式为
选项
答案
由题设[*]。且抛物线在点M(x,y)处的曲率半径为[*]抛物线上[*]的弧长为[*]因此得到p(x)与S(x)都是x的函数,从而由[*]知[*]且[*]因此[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ht84777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
证明:当χ>0时,χ2>(1+χ)ln2(1+χ).
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.求曲线y=f(x2)∫0xf(-t2)dt的拐点.
要造一个圆柱形无盖水池,使其客积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
已知0是的特征值,求a和A的其他特征值及线性无关的特征向量.
设二维随机向量(X,Y)服从D={(x,y)|0≤x≤1,0≤y≤2}上的均匀分布.求(1)P{3X≥Y};(2)Z=min{X,Y}的密度函数.
已知A,B是反对称矩阵,证明:AB一BA是反对称矩阵。
设y(x)是初值问题的解,则∫0+∞xy’(x)dx﹦()
随机试题
在论文的组成部分中,位于正文之后、读者最关心的文章精髓部分是()。
妊娠合并巨细胞病毒感染下列哪项是不恰当的
在人本主义(询者中心)治疗中最重要的是
案例1.项目概况2015年10月8日,A公司与建工B公司签订《建设工程施工合同》,明确某商用建筑土建施工由建工B公司承包,建筑面积为11.5×104m2。2016年9月25日项目主体结构封顶。项目施工现场塔式起重机2台,施工升降机2台,
背景某高科技集团在上海浦东投资兴建总部办公大楼,为了加快建设进度、尽快投入使用,业主采用平行承发包模式,将土建工程、装饰装修工程分别与两家不同的工程公司AB分别签署了相应的土建施工合同、装饰装修施工合同。施工过程中发生如下事件:事件一:
下列关于期货合约最小变动价位的说法,不正确的是()。
旅行社违反《责任保险规定》有关规定,拒不接受旅游行政管理部门的管理和监督检查的,由旅游行政管理部门限期改正,给予警告,逾期不改正的,可以处罚款()。
对教师而言,课程资源指的就是教学大纲和教科书。()
设f(u)为可微函数,且f(0)=0,则
数据库应用系统中的核心问题是( )。
最新回复
(
0
)