首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明: aij=一Aij <=> ATA=E,且|A|=一1。
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明: aij=一Aij <=> ATA=E,且|A|=一1。
admin
2019-06-28
50
问题
已知A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式。证明:
a
ij
=一A
ij
<=> A
T
A=E,且|A|=一1。
选项
答案
当a
ij
=一A
ij
时,有A
T
=一A
*
,则A
T
A=一A
*
A=一|A|E,此时n|A|tr(一A
T
A)=一[*]a
ij
2
<0,即|A|<0。在A
T
A=一|A|E两边取行列式,得|A|=一1。 反之,若A
T
A=E且|A|=一1,则A
*
A=|A|E=一E=一A
T
A=(一A
T
)A,于是A
T
=一A
*
,即a
ij
=一A
ij
。
解析
转载请注明原文地址:https://kaotiyun.com/show/OZV4777K
0
考研数学二
相关试题推荐
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,l,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ1线性无关。
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则=________
计算I=ydχdy,其中D由曲线=1及χ轴和y轴围成,其中a>0,b>0.
设f(t)=arctan(1+x2+y2)dxdy,则为().
随机试题
属于后丘脑的结构是()
A、3~4个月B、3~6个月C、8~9个月D、1岁左右E、3岁以后鸡胸和漏斗胸多见于
痛经寒湿凝滞证的治法是
古代医患关系的特点为()
发生工程变更时,应由承包人首先向( )提出申请。
我国货币市场主要包括()。
观察法的缺点有()。
业主公约签订的条件是小区入住率达()以上,已入住业主中持有产权达()以上。
弗洛伊德把人的意识分为()。
Howmanytimedoyouspendwithyourparents?【M1】______Yourparentsareyourdearerpeopleintheworld【M2】______whenyouare
最新回复
(
0
)