首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
admin
2018-12-19
53
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题:
①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解
③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
故选A。
转载请注明原文地址:https://kaotiyun.com/show/htj4777K
0
考研数学二
相关试题推荐
求下列齐次线性方程组的基础解系:(3)nx1+(n一1)x2+…+2xn-1+xn=0.
A为3阶实对称矩阵,A的秩为2,且求矩阵A.
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是________.
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
随机试题
下列各组词语中,划横线的读音完全相同的一组是
根据《宪法》的规定,下列哪些权利属于公民的人格尊严?()
简述私分国有资产罪的概念及犯罪构成。
通过项目评估的逻辑框架,能清楚地看出各种目标之间的()、制约条件及需要解决的问题。
液压试验宜在环境温度( )℃以上进行,当环境温度低于此时,应采取防冻措施。
截面为矩形的不锈钢材,除轧制外未经过进一步加工,钢材的宽度为50毫米,厚度为5毫米,冷成型,笔直状报验
根据《刑事诉讼法》的规定,下列关于刑事诉讼当事人、回避、辩护、审理的表述中,正确的是()。
下列各项中,关于房产税的减免税优惠表述正确的有()。
某工程,由甲、乙两队承包,2天可以完成,需支付1800元;由乙、丙两队承包,3天可以完成,需支付1500元;由甲、丙两队承包2天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
不具备关闭间隙功能的弯曲是()。
最新回复
(
0
)