首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
admin
2016-03-05
69
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(一1,2,一3)
T
都是A属于λ=6的特征向量,求矩阵A.
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值.因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关. 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有[*]解出此方程组的基础解系α=(一1,1,1)
T
.根据A(α
1
,α
2
,α
3
)=(6α
1
,6α
2
,0),因此[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/G434777K
0
考研数学二
相关试题推荐
设y=f(x)在[0,+∞)上有二阶连续导数,且f”(x)>0,y=g(x)是y=f(x)在(0,+∞)内任意点x0处的切线方程,F(x)=f(x)-g(x),则()
函数f(x)=ln(secx+tanx)是().
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=在点x=0处().
设函数f(x),g(x)在[a,b]内二阶可导,g”(x)≠0,f(a)=g(a)=f(b)=g(b)=0,证明:在(a,b)内g(x)≠0;
函数f(x)在x=0的邻域内存在二阶连续导数,且f’(0)=f”(0)=0,则().
若事件A1,A2,A3两两独立,则下列结论成立的是().
设随机变量X服从参数为2的指数分布,令求:(1)(U,V)的分布;(2)U,V的相关系数.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
随机试题
X62W型铣床的()采用了反接制动的停车方法。
________是实行半总统半议会制决策体制的典型国家;________是实行委员会制的典型国家。
某公司原有资本1000万元,其中债务资本400万元(每年负担利息30万元),普通股资本600万元(发行普通股12万股,每股面值50元),企业所得税税率为30%。由于扩大业务,需追加筹资300万元,其筹资方式有三个:一是全部发行普通股,增发6万股,每股面值5
下列哪项不是婴儿急性上呼吸道感染的并发症()
我国扶植中小企业政策规定:凡符合国家产业政策技术改造项目的国有设备投资,按()比例抵免企业所得税。
马克思在研究战争与和平的关系时指出:“战争比和平发达得早;某些经济关系,如雇佣劳动、机器等等,怎样在战争和军队等等中比在资产阶级社会内部发展得早。生产力和交往关系的关系在军队中也特别显著。”这一论述说明了一个重要观点,即()。
《奥格斯堡和约》
基本以下题干,回答问题在某一演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1到7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行,张和王既可以唱奇数号
HowtoSpeakGoodEnglishI.IntroductionA.Manylearnershavingdifficultyincommunicatingduetothelackof【T1】______andr
Wellknownforher________andtough-mindedmoviecriticism,columnistPaulinealsopossessesanextensiveknowledgeofthetec
最新回复
(
0
)