首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
admin
2017-10-12
58
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf"(x)+3x[f’(x)]
2
=1一e
-x
,且y(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy一x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值。
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(A)=f’(ξ)(x-a),则
由f"(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,
显然,不论x
0
>0,还是x
0
<0,都有f"(x
0
)>0,于是由f’(x
0
)=0与f"(x
0
)>0
得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’一2yy’+xy’+y—x=0, ①
再求导,得
(3y
2
-2y+x)y"+(6y-2)(y’)
2
+2y’=1 ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y"|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得 f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+2)
(x)=0,得
f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-ef
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/hvH4777K
0
考研数学三
相关试题推荐
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
[*]
1/3
设f(μ,ν)具有二阶连续偏导数,且满足又g(x,y)=
掷一枚不均匀的硬币,设正面出现的概率为P,反面出现的概率q为q=1一P,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布刀__________.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设f(x)在(-∞,+∞)上连续,且证明:(1)若f(x)为偶函数,则F(x)也是偶函数;(2)若f(x)是单调减少函数,则F(x)也是单调减少函数.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设甲袋中有2个白球,乙袋中有2个红球,每次从各袋中任取一球,交换后放入另一袋,这样交换3次,求甲袋中自球数X的数学期望.
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
随机试题
在冰雪道路上行车时,车辆的稳定性降低,加速过急时车轮极易空转或溜滑。
实行分权的主要手段是()
患者男性,42岁。乙型肝炎病史十余年,近来右上腹不适,腹胀。超声表现右叶缩小,左叶增大,肝被膜不光滑,实质回声增粗增强,欠均匀,肝静脉细窄,走行迂曲,管壁不平整。如果栓子局部门静脉管壁规整显示清晰,最可能是
体外循环手术病人术前应当停用的药物包括
血府逐瘀汤的组成中含有补阳还五汤的组成中含有
48岁妇女,绝经1年,阴道少许接触出血,查:子宫颈中度糜烂,宫体稍小,子宫颈刮片检查2次均阳性,阴道镜下宫颈活检阳性,应选择哪种方法排除子宫颈癌
假定该建筑的两层地下室采用箱基础,地下室及地上一层的折算受剪面积之比A0/A1=n,其混凝土强度等级同地上一层。地下室顶板没有较大洞口,可作为上部结构的嵌固部位。试问:方案设计时估算的地下室层高最大高度(m),应与下列何项数值最为接近?提示:需特
某高速公路由于业主高架桥修改设计,工程师下令承包商停工1个月。就此,-承包商提出索赔。按照国际惯例,索赔能够成立的包括( )。
光在不同的介质中传播速度不同,在()中传播最快。
2009年1月6日,中国海军护航舰艇编队顺利抵达亚丁湾海域执行护航任务。亚丁湾位于()
最新回复
(
0
)