首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
admin
2017-10-12
81
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf"(x)+3x[f’(x)]
2
=1一e
-x
,且y(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy一x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值。
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(A)=f’(ξ)(x-a),则
由f"(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,
显然,不论x
0
>0,还是x
0
<0,都有f"(x
0
)>0,于是由f’(x
0
)=0与f"(x
0
)>0
得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’一2yy’+xy’+y—x=0, ①
再求导,得
(3y
2
-2y+x)y"+(6y-2)(y’)
2
+2y’=1 ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y"|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得 f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+2)
(x)=0,得
f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-ef
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/hvH4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设函数f(u)可微,且f(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz丨(1,2)=_________.
A,B是两个事件,则下列关系正确的是().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为m×n矩阵,且r(A)==r<n,其中.证明方程组AX=b有且仅有n一r+1个线性无关解;
微分方程的通解为______.
差分方程yx+1一3yx=2.3x的通解为_____.
把当x→0时的无穷小量α=In(1+x2)一1n(1一x4),,γ=arctanx-x排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
设甲袋中有2个白球,乙袋中有2个红球,每次从各袋中任取一球,交换后放入另一袋,这样交换3次,求甲袋中自球数X的数学期望.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
随机试题
素月分辉,明河共影,_________。(张孝祥《念奴娇.过洞庭》)
某厂房的纵向天窗宽8m、高4m,采用彩色压型钢板屋面、冷弯型钢檩条、天窗架:檩条、拉条、撑杆和天窗上弦水平支撑局部布置简图如题图中的图(a)所示:天窗两侧的垂直撑如图(b)所示,工程中通常采用的三种形式天窗架的结构简图分别如图(c)、(d)、(e)所示。所
根据FIDIC((施工合同条件》,在预付款起扣点后的工程进度款支付时,按本期承包商应得的金额中减去后续支付的预付款和应扣保留金后款额的(),作为本期应扣还的预付款。
发票的使用要求包括()。
少壮不努力,老大徒伤悲:惜时:奋斗
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Musicproducesprofoundandlastingchangesinthebrain.Schoolsshouldaddmusicclasses,notcutthem.Nearly20yearsago,a
Whatdoesthemanmean?
Whenwasthecustomersurveyconducted?Itwasconducted______.WhenshouldtheCustomerServiceDepartmentcomeupwithapla
TheHealthBenefitsofDrinkingWater—Isbottleddrinkingwaterhealthierthanfilteredtapwater?[A]Waterisakeyin
最新回复
(
0
)