首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
admin
2017-10-12
93
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf"(x)+3x[f’(x)]
2
=1一e
-x
,且y(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy一x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值。
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(A)=f’(ξ)(x-a),则
由f"(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,
显然,不论x
0
>0,还是x
0
<0,都有f"(x
0
)>0,于是由f’(x
0
)=0与f"(x
0
)>0
得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’一2yy’+xy’+y—x=0, ①
再求导,得
(3y
2
-2y+x)y"+(6y-2)(y’)
2
+2y’=1 ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y"|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得 f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+2)
(x)=0,得
f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-ef
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/hvH4777K
0
考研数学三
相关试题推荐
下列函数在何处是间断的?
[*]
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设A为反对称矩阵,且|A|≠0,B可逆,A、B为同阶方阵,A为A的伴随矩阵,则[ATA(BT)-1]=().
验证下列函数都是所给微分方程的解,其中哪些是通解?(1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x);(2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2sinx+1);(3)y〞+4y=0,y=C1sin2x+C2sinxcosx
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.(I)求该二次型表达式;(Ⅱ)求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
设则A-1=____________.
随机试题
城镇化健康有序发展,常住人口城镇化率达到()左右是新型城镇化规划的发展目标之一。
受到挫折后可能引起的反应。
行政机构改革的原则是___________。
《张中丞传后叙》中,作者补记许远的事迹,采用的方法是()
A.食积B.湿热食积C.脾虚停食D.痢疾,食积E.脾虚气滞,寒热互结证
下列关于流水施工的说法中,正确的有()
某企业进行人力资源需求与供给预测。经过调查研究与分析,确认本企业的销售额(万元)和所需销售人员数量(人)成一元线性正相关关系,并根据过去10年的统计资料建立了一元线性回归预测模型Y=a+bX,其中:X代表销售额,Y代表销售人数,回归系数a=52,b=0.0
根据支付结算法律制度的规定,电子承兑汇票的付款期限自出票日至到期日不能超过一定期限。该期限为()。
下列哪个选项不属于我国的国家监督体系?()
在表单设计阶段,下列说法不正确的是()。
最新回复
(
0
)