首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)是连续且单调增加的奇函数,φ(x)=∫0x(2u-x)f(x-u)du,则φ(x)是( ).
设函数f(x)是连续且单调增加的奇函数,φ(x)=∫0x(2u-x)f(x-u)du,则φ(x)是( ).
admin
2020-06-11
23
问题
设函数f(x)是连续且单调增加的奇函数,φ(x)=∫
0
x
(2u-x)f(x-u)du,则φ(x)是( ).
选项
A、单调增加的奇函数
B、单调减少的奇函数
C、单调增加的偶函数
D、单调减少的偶函数
答案
B
解析
φ(x)=∫
0
x
(2u-x)f(x-u)du
=2∫
0
x
uf(x-u)du-x∫
0
x
f(x-u)du
=-2∫
0
x
uf(x-u)d(x-u)+x∫
0
x
f(x-u)d(x-u)
-2∫
x
0
(x-t)f(t)dt+x∫
x
0
f(t)dt
=2∫
0
x
(x-t)f(t)dt-x∫
0
x
f(t)dt
=2x∫
0
x
f(t)dt-2∫
0
x
xf(t)dt-x∫
0
x
f(t)dt
=x∫
0
x
f(t)dt-2∫
0
x
tf(t)dt,
因为φ(-x)=-x∫
0
-x
f(t)dt-2∫
0
-x
tf(t)dt
x∫
0
x
f(-u)du-2∫
0
x
(-u)f(-u)d(-u)
=-x∫
0
x
f(u)du+2∫
0
x
uf(u)du=-φ(x),
所以φ(x)为奇函数;
又φ’(x)=∫
0
x
f(t)dt-xf(x),
当x>0时,φ’(x)=∫
0
x
f(t)dt-xf(x)=x[f(ξ)-f(x)]≤0(0≤ξ≤x),
当x≤0时,φ’(x)=∫
0
x
f(t)dt-xf(x)=x[f(ξ)-f(x)]≤0(x≤ξ≤0),
所以φ(x)为单调减少的奇函数,选(B).
转载请注明原文地址:https://kaotiyun.com/show/i184777K
0
考研数学二
相关试题推荐
设由y轴、y=x2(x≥0)及y=a(0<a<1)所围成的平面图形及由y=a,y=x2及x=1所围成的平面图形都绕x轴旋转,所得旋转体的体积相等,求a.
求函数z=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。求的关系式
计算.其中a,b>0.
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
D=,证明行列式D=(n+1)an。
在数中求出最大值.
A为三阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
设非齐次线性微分方程yˊ+p(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
随机试题
患者,女性,32岁。因腹痛、反复吐血3天急诊就诊××大学附属医院。患者3天前进食冰镇食物后出现腹痛,为上腹部持续性疼痛,阵发性加剧,吐血共3次,前两次为鲜血,量分别为200ml、300ml,第三次为咖啡样血性物,量约200ml,不伴有便血及发热,未服药治
材料:赵老师设计了“访问”鲁尔区的东北工业区经济发展智囊团的角色扮演教学模式,让学生以小组协作、扮演考察团中成员的形式进行学习。确定任务:对鲁尔工业区进行基于问题的考察,对中国东北老工业区提出可行性的振兴策略。学生自由选择体验
与"天癸"产生关系最为密切的物质是
城乡集市贸易市场可以出售()。
(2010年考试真题)下列各项中,不属于行政处罚的是()。
河北省已基本形成了以()为中心,辐射全国30个大中城市的航空运输网络。
通报属于()。
若2009年工业企业的基础研究经费支出为23390万元,则2009年全国基础研究经费支出约为()万元。
未来主义
Lithography(平版印刷术)isanartprocessofprintingfromaplanesurfaceonwhichtheimagetobeprintedisink-receptiveandtheb
最新回复
(
0
)