首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1A是对称矩阵.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1A是对称矩阵.
admin
2018-11-20
48
问题
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)
-1
A是对称矩阵.
选项
答案
(E+AB)
-1
A对称,就是[(E+AB)
-1
A]
T
=(E+AB)
-1
A. [(E+AB)
-1
A]
T
=A[(E+AB)
-1
]
T
=A[(E+AB)
T
]
-1
=A(E+BA)
-1
. 于是要证明的是 (E+AB)
-1
A=A(E+BA)
-1
. 对此式作恒等变形: (E+AB)
-1
A=A(E+BA)
-1
[*]A=(E+AB)A(E+BA)
-1
(用E+AB左乘等式两边) [*]A(E+BA)=(E+AB)A (用E+BA右乘等式两边). 等式A(E+BA)=(E+AB)A.显然成立,于是(E+AB)
-1
A=A(E+BA)
-1
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/i5W4777K
0
考研数学三
相关试题推荐
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
10件产品中4件为次品,6件为正品,现抽取2件产品.在第一件为正品的情况下,求第二件为次品的概率;
设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+C)=,则P(A)=________.
设有三个线性无关的特征向量,则a=________.
设A为n阶矩阵,且Ak=0,求(E一A)一1.
设AX=A+2X,其中A=,求X.
设求:|一2B|;
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f"(ξ)=2.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)