首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
admin
2018-07-31
41
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
令矩阵A=[α
1
α
2
α
3
|β
1
β
2
β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
—α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
—2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/i5g4777K
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设f(x)在(0,+∞)内连续且单调减少.证明: ∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=,求a,b及正交矩阵P,使得PTAP=B.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
随机试题
在新课程中,对于教师的教学行为发生变化的描述,正确的是()
关于输尿管,叙述正确的是
空调机制冷效果很差的原因只跟制冷系统中制冷剂有关。()
民谣“山西人,大褥套,发财还家盖房置地养老少”反映了古代山西人外出经商的普遍追求。由此可以解释近代晋商衰落的原因是()。。
在对学生进行心理辅导时,常使用的“理性一情绪疗法”属于()。
190,163,138,115,()。
个人利益与集体利益永远是冲突的。()
有A、B两瓶混合液,A瓶中水、油、醋的比例为3:8:5,B瓶中水、油、醋的比例为1:2:3,将A、B两瓶混合液倒在一起后,得到的混合液中水、油、醋的比例可能为()。
SELECT命令中,表示条件表达式用WHERE子句,分组用(8)子句,排序用(9)子句。8.
______andhardworkarethecornerstonesofthiscompany.
最新回复
(
0
)