首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
admin
2020-06-05
42
问题
设α
1
=
,α
2
=
,α
3
=
,则三条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充分必要条件是( ).
选项
A、α
1
,α
2
,α
3
线性相关
B、α
1
,α
2
,α
3
线性无关
C、R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关
答案
D
解析
方法一
三直线交于一点的充分必要条件是线性方程组(Ⅰ):
或xα
1
+yα
2
+α
3
=0有唯一解,即α
3
=﹣xα
1
-yα
2
.而方程组xα
1
+yα
2
+α
3
=0有唯一解
α
3
可由α
1
,α
2
线性表示,且表示式唯一
α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
方法二 本题也可直接从方程组(Ⅰ)进行推演.方程组(Ⅰ)又为
首先
由方程组(Ⅰ)有唯一解可知α
3
可由α
1
,α
2
线性表示,即α
1
,α
2
,α
3
线性相关.又方程组(Ⅰ)有唯一解,即方程组
有唯一解可知其系数矩阵A=
的秩R(A)=2.再由矩阵“三秩相等”的性质可知秩R(α
1
,α
2
)=2,即α
1
,α
2
线性无关,因而(D)正确.选项(A)仅是三直线交于一点的必要条件.选项(C)错误是因为有可能R(α
1
,α
2
)=1,即α
1
和α
2
线性相关.若α
1
,α
2
线性相关,则α
1
∥α
2
,三直线不可能交于一点.
转载请注明原文地址:https://kaotiyun.com/show/iAv4777K
0
考研数学一
相关试题推荐
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设随机变量X服从F(3,4)分布,对给定的α(0<α<1),数Fα(3,4)满足P{X>Fα(3,4)}=α,若P{X≤x}=1一α,则x=
设n维行向量α=,矩阵A=E—αTα,B=E+2αTα,则AB=
设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=()
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B—C为
设A,B是n阶矩阵,则C=的伴随矩阵是
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
行列式=________。
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.(Ⅰ)如果EX=μ,DX=σ2,试证明:Xi一(Ⅱ)如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
随机试题
腹股沟疝修补术属于
女,15岁,1年前前牙碰伤未治,近3日牙龈肿痛不能咬物。查牙冠近中切角折断,牙冠变黑,叩痛(++),I°松动,唇侧牙龈红肿,该患牙应诊断为()
医疗机构根据医疗需要可以决定或推荐使用()
贾某在抢劫于某的过程中见于某拼命反抗,用刀猛刺了于某一刀,于某大声呼救,贾某怕罪行暴露,遂弃刀逃跑。于某被刺成重伤。贾某的行为构成:
以下属于安全生产相关法律的是()。
Mostparentsprizethediversitywithintheirchildren’spublicschools.Theyknowthatlearningtocooperateandexcelinadiv
请将图4-15中各实体之间的联系补充完整。根据问题1所完成的实体—联系图,完成(1)空缺处的商品关系模式,以及新增加子类型的实体关系模式。
E-R模型向关系模型转换,一个N:M的联系转换成一个关系模式时,该关系模式的主键是()。
[A]classified[B]conducted[C]dieting[D]earlier[E]later[F]less[G]life[H]linked[I]obese[J]observational
Caffeineisadrugthatisnaturallyproducedintheleavesandseedsofmanyplants.It’salsoproduced【S1】______andaddedto
最新回复
(
0
)