首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
admin
2020-06-05
43
问题
设α
1
=
,α
2
=
,α
3
=
,则三条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充分必要条件是( ).
选项
A、α
1
,α
2
,α
3
线性相关
B、α
1
,α
2
,α
3
线性无关
C、R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关
答案
D
解析
方法一
三直线交于一点的充分必要条件是线性方程组(Ⅰ):
或xα
1
+yα
2
+α
3
=0有唯一解,即α
3
=﹣xα
1
-yα
2
.而方程组xα
1
+yα
2
+α
3
=0有唯一解
α
3
可由α
1
,α
2
线性表示,且表示式唯一
α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
方法二 本题也可直接从方程组(Ⅰ)进行推演.方程组(Ⅰ)又为
首先
由方程组(Ⅰ)有唯一解可知α
3
可由α
1
,α
2
线性表示,即α
1
,α
2
,α
3
线性相关.又方程组(Ⅰ)有唯一解,即方程组
有唯一解可知其系数矩阵A=
的秩R(A)=2.再由矩阵“三秩相等”的性质可知秩R(α
1
,α
2
)=2,即α
1
,α
2
线性无关,因而(D)正确.选项(A)仅是三直线交于一点的必要条件.选项(C)错误是因为有可能R(α
1
,α
2
)=1,即α
1
和α
2
线性相关.若α
1
,α
2
线性相关,则α
1
∥α
2
,三直线不可能交于一点.
转载请注明原文地址:https://kaotiyun.com/show/iAv4777K
0
考研数学一
相关试题推荐
设有空间区域Ω1={(x,y,z)|x2+y2+z2≤R2,z≥0},Ω2={(x,y,2)|x2+y2+z2≤R2,x≥0,y≥0,z≥0},则下列选项中正确的是()
下列命题成立的是().
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
将长度为1m的木棒随机地截成两段,则两段长度的相关系数为()
直线1:之间的关系是()
设随机变量已知X与Y的相关系数ρ=1,则P{X=0,Y=1}的值必为()
A=,其中a1,a2,a3,a4两两不等,下列命题正确的是().
设A、B分别为m阶和n阶方阵,且|A|=a,|B|=b,则行列式=________.
行列式=________。
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.(Ⅰ)如果EX=μ,DX=σ2,试证明:Xi一(Ⅱ)如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
随机试题
既能用于新的陆上网络,又可对现有系统进行升级改造,特别适用于DWDM系统传输的是()光纤。
以下对施工企业项目经理的工作性质的说明,正确的是( )。
下列属于影响可转换公司债券价值的因素为()。
关于库存商品、发出商品的核算,下列说法正确的有()。
《中华人民共和国税收征收管理法》第八十八条规定,纳税人、扣缴义务人、纳税担保人同税务机关在纳税上发生争议时,必须先依照税务机关的纳税决定缴纳或者解缴税款及滞纳金或者提供相应的担保,然后可以依法申请行政复议;对行政复议决定不服的,可以依法向人民法院起诉。这体
根据《企业所得税法》的规定,企业的下列各项支出,在计算应纳税所得额时,准予从收入总额中直接扣除的有()。
镜泊湖是大约1万年前,由于()而形成的。
教育电视台是指教育行政部门开办的专业电视台。()
TheAmericanFamilyIntheAmericanfamilythehusbandandwifeusuallyshareimportantdecisionmaking.Whenthechildrenare(5
Therearethreekindsofgoals:short-term,medium-rangeandlong-termgoals.Short-rangegoalsarethosethatusuallydealwith
最新回复
(
0
)