首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
设α1=,α2=,α3=,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是( ).
admin
2020-06-05
30
问题
设α
1
=
,α
2
=
,α
3
=
,则三条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充分必要条件是( ).
选项
A、α
1
,α
2
,α
3
线性相关
B、α
1
,α
2
,α
3
线性无关
C、R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关
答案
D
解析
方法一
三直线交于一点的充分必要条件是线性方程组(Ⅰ):
或xα
1
+yα
2
+α
3
=0有唯一解,即α
3
=﹣xα
1
-yα
2
.而方程组xα
1
+yα
2
+α
3
=0有唯一解
α
3
可由α
1
,α
2
线性表示,且表示式唯一
α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
方法二 本题也可直接从方程组(Ⅰ)进行推演.方程组(Ⅰ)又为
首先
由方程组(Ⅰ)有唯一解可知α
3
可由α
1
,α
2
线性表示,即α
1
,α
2
,α
3
线性相关.又方程组(Ⅰ)有唯一解,即方程组
有唯一解可知其系数矩阵A=
的秩R(A)=2.再由矩阵“三秩相等”的性质可知秩R(α
1
,α
2
)=2,即α
1
,α
2
线性无关,因而(D)正确.选项(A)仅是三直线交于一点的必要条件.选项(C)错误是因为有可能R(α
1
,α
2
)=1,即α
1
和α
2
线性相关.若α
1
,α
2
线性相关,则α
1
∥α
2
,三直线不可能交于一点.
转载请注明原文地址:https://kaotiyun.com/show/iAv4777K
0
考研数学一
相关试题推荐
已知向量的始点A(4,0,5),则B的坐标为()
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
曲线在点(1,-1,0)处的切线方程为()
(2003年)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π),L为D的正向边界。试证:
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
(89年)设A是4阶矩阵,且A的行列式|A|=0,则A中
随机试题
散热器放置在以下哪个位置最好?[2009年第74题]
与慢性胃体胃炎发病有关的是
乳糖是优良的填充剂,尤其适用于引湿性药物,但价格较高,现多用下列哪组混合物替代( )。
下列关于平衡矩阵式组织结构形式特点的表述,正确的足()。
下列选项中,()不是设计或施工总分包模式的优点。
证券交易所对上市证券实施挂牌交易,上市首日证券行情显示的前收盘价为()。
根据我国《合同法》,以下对买卖合同中标的物的风险负担的表述错误的是()。
社会工作者的核心能力有()。
某学生认为自己的作文水平跟前一段相比有明显的提高,这种评价类型是()。
请根据以下各小题的要求设计VisualBasic应用程序(包括界面和代码)。(1)在名称为Forml的窗体上画两个名称分别为Frarnel、Frame2的框架,标题分别为“字号”、“修饰”;在Framel中画两个单选按钮,名称分别为Optionl、Opt
最新回复
(
0
)