首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,2]上连续,在(0,2)内二阶可导,且f(0)=∫01f(x)dx=,证明:存在ξ∈(0,2),使得f"(ξ)=0。
设f(x)在区间[0,2]上连续,在(0,2)内二阶可导,且f(0)=∫01f(x)dx=,证明:存在ξ∈(0,2),使得f"(ξ)=0。
admin
2018-05-25
76
问题
设f(x)在区间[0,2]上连续,在(0,2)内二阶可导,且f(0)=∫
0
1
f(x)dx=
,证明:存在ξ∈(0,2),使得f"(ξ)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,则由牛顿一莱布尼茨公式及积分中值定理,有 ∫
0
1
f(x)dx=F(1)一F(0)=F’(c)(1一0)=f(c),其中c∈(0,1),再由积分中值定理得[*],于是有f(0)=f(c)=f(x
0
)。 从而f(x)满足罗尔定理的条件,故存在ξ
1
∈(0,c),ξ
2
∈(c,x
0
),使得f’(ξ)=f’(ξ
2
)=0,再次利用罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,2),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/iLg4777K
0
考研数学一
相关试题推荐
设以为正常数,f(x)=xea一aex—x+a.证明:当x>以时,f(x)<0.
设随机变量且X与Y的相关系数为则P{X=Y)=________.
A、 B、 C、 D、 A由上、下限知,积分区域D=D1∪D2={(x,y)|0≤x≤1,0≤y≤1}∪{(x,y)|lny≤x≤1,l≤y≤e}={(x,y)|0≤y≤ex,0≤x≤1},
三个非零向量a,b与c,则a×b+b×c+c×a=0是a、b、c共面的()
设随机变量X1,X2,X3相互独立,且X1,X2均服从N(0,1),P{X3=一1)=则Y=X1+X2X3的密度函数fY(y)为()
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使(Ⅱ)求出(Ⅰ)中η关于x的函数具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
设随机变量X在(0,1)上服从均匀分布,令随机变量(Ⅰ)求Y的分布函数FY(y);(Ⅱ)求Y的数学期望EY.
设g(x)在x=0的某邻域内连续且又设f(x)在该邻域内存在二阶导数且满足x2f"(x)一[f’(x)]2=xg(x).则()
设X1,X2,…Xn为一列独立同分布的随机变量,随机变量N只取正整数且N与{Xn}独立,求证:
随机试题
防风长于桑叶长于
在DDN网中,速率小于()kbiffs称为子速率。
孙辈的父母因故离开家长只留下祖辈和孙辈的家庭是()
与吸附力关系最密切的因素是
1型糖尿病的临床特点是
张某与厂方的纠纷可按( )处理。可变更合同在变更前属于( )的合同。
下列各项中,税务机关有权核定纳税人应纳税额的情形有()。
在某基金公司的晨会上,投资经理A提到:“可以通过投资股票、债券、期货等来分散基金的非系统性风险,且也可一定程度上降低系统性风险。”;投资经理B补充道:“系统性风险主要受宏观因素影响,应该加强对经济、政治和法律等因素的关注。”关于两人的说法,下列表述正确的是
WhatanimaldoesRepublicPartytakeasitssymbol?
已知总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为+(2-3a)S2是λ的无偏估计,则a=______。
最新回复
(
0
)