首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在ξ∈(0,1),使得f(ξ)=1一ξ;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在ξ∈(0,1),使得f(ξ)=1一ξ;
admin
2018-12-19
43
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
存在ξ∈(0,1),使得f(ξ)=1一ξ;
选项
答案
令F(x)=f(x)一1+x,则F(x)在[0,1]上连续,且F(0)=一1<0,F(1)=1>0,故由零点定理知,存在ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1一ξ。
解析
转载请注明原文地址:https://kaotiyun.com/show/iNj4777K
0
考研数学二
相关试题推荐
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(2012年)设区域D由曲线y=sinχ=±,y=1围成,则(χy5-1)dχdy=【】
(2005年)设函数u(χ,y)=φ(χ+y)+φ(χ-y)+∫χ-yχ+yφ(t)dt,其中函数φ具有二阶导数,φ具有一阶导数,则必有【】
(2014年)已知函数f(χ,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(χ,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2008年)曲线sin(χy)+ln(y-χ)=χ在点(0,1)处的切线方程是_______.
(1991年)曲线y=(χ-1)(χ-2)和χ轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
随机试题
声波传入内耳最主要的途径是
某人冬季用煤球取暖,但因烟囱阻塞而煤气中毒。病人处于昏迷状态,大小便失禁。抢救时首要措施是
全口义齿应一般在拔牙后多长时间进行修复
气虚血瘀型中风恢复期宜选
按照《建筑法》的规定,申请人以欺骗手段取得资质证书应承当的法律责任主要包括()。
结构性外汇理财产品的客户投资者面临的风险因素有()。
以下交易属于非正常交易的情况有()。
水至清则无鱼
简述概念形成的假说。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为__________。
最新回复
(
0
)