首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在ξ∈(0,1),使得f(ξ)=1一ξ;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在ξ∈(0,1),使得f(ξ)=1一ξ;
admin
2018-12-19
44
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
存在ξ∈(0,1),使得f(ξ)=1一ξ;
选项
答案
令F(x)=f(x)一1+x,则F(x)在[0,1]上连续,且F(0)=一1<0,F(1)=1>0,故由零点定理知,存在ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1一ξ。
解析
转载请注明原文地址:https://kaotiyun.com/show/iNj4777K
0
考研数学二
相关试题推荐
(2003年)设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(χ)>0.若极限存在.证明:(1)在(a,b)内f(χ)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2006年)已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(χ0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于χ≤χ0的部分)及χ轴所围成的平面图形的面积.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2007年)设矩阵,则A与B【】
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=aijxixj在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设为正定二次型,则t的取值范围是_______
随机试题
谎言重复一千次就会变成真理,这实际上是说()
A.风池、百会、内关、太冲B.风池、百会、肝俞、肾俞、足三里C.内关、水沟、三阴交、极泉、尺泽、委中D.内关、水沟治疗中风中经络,所选取的穴位是
患者男性,45岁。在果园劳作后出现头晕、多汗、恶心、呕吐、腹痛以及呼吸困难,并伴有瞳孔缩小和神志模糊可改善瞳孔缩小、呼吸困难、多汗等症状的药物是
A.阳虚阴盛,格阳于外的真寒假热证B.里热盛极,格阴于外的真热假寒证C.瘀血内阻所致的出血证D.中气不足所致的脘腹胀满E.实热壅积的阳明腑实证“寒因寒用”的治法适用于
甲公司将1台挖掘机出租给乙公司,为担保乙公司依约支付租金,丙公司担任保证人,丁公司以机器设备设置抵押。乙公司欠付10万元租金时,经甲公司、丙公司和丁公司口头同意,将6万元租金债务转让给戊公司。之后,乙公司为现金周转将挖掘机分别以45万元和50万元的价格先后
为了取得目标控制的理想成果,应当从多方面采取措施。建设工程目标控制的措施通常可以概括为()。
业主大会、业主委员会作出的决定违反法律、法规的,物业所在地的区、县人民政府房地产行政主管部门,应当责令限期改正或者撤销其决定,并通告()。
关于《中华人民共和国预防未成年人犯罪法》,下列说法错误的是()。
按照规则对人们行为规定和限定的范嗣或程度不同,法律规则可分为()
CulturalDifferencesbetweenEastandWestI.FactorsleadingtotheculturaldifferencesA.Differentculture【B1】______【B1】___
最新回复
(
0
)