首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,f(x)=aex一1一x一则f(x)在区间(一∞,+∞)内 ( )
设a为常数,f(x)=aex一1一x一则f(x)在区间(一∞,+∞)内 ( )
admin
2018-09-20
14
问题
设a为常数,f(x)=ae
x
一1一x一
则f(x)在区间(一∞,+∞)内 ( )
选项
A、当a>0时f(x)无零点,当a≤0时f(x)恰有一个零点
B、当a>0时f(x)恰有两个零点,当a≤0时f(x)无零点
C、当a>0时f(x)恰有两个零点,当a≤0时f(x)恰有一个零点
D、当a>0时f(x)恰有一个零点,当a≤0时f(x)无零点
答案
D
解析
本题考查一元函数微分学的应用,讨论函数的零点问题.
令g(x)=f(x)e
-x
=
由于e
-x
>0,所以g(x)与f(x)的零点完全一样,又g’(x)=
,且仅在一点x=0等号成立,故g(x)严格单调增加,所以g(x)至多有一个零点,从而f(x)至多有一个零点.
当a>0时,f(一∞)<0,f(+∞)>0,由连续函数零点定理,f(x)至少有一个零点,至少、至多合在一起,所以f(x)恰有一个零点.
当a≤0,f(x)e
-x
=
<0,f(x)无零点.
转载请注明原文地址:https://kaotiyun.com/show/iVW4777K
0
考研数学三
相关试题推荐
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设总体X的分布律为P(x=i)=(i=1,2,…,θ),X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为________(其中θ为正整数).
设f(x)在(0,+∞)内连续且单调减少.证明:∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设函数f(x)在[0,1]上连续且非负,证明:在(0,1)内存在一点ξ,线ξf(ξ)=∫ξ1f(x)dx.
设企业生产一种产品,其成本C(Q)=Q3-16Q2+100Q+1000,平均收益=a-bQ(a>0,0
xx(1+lnx)的全体原函数为_______.
设F(x)=∫xx+2πesintsintdt,则F(x)()
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
随机试题
A、脾阳虚带下B、肾阳虚带下C、湿热下注带下D、热毒蕴结带下E、阴虚夹热带下带下量多,绵绵不断,质清稀如水。多属
A.《纽伦堡法典》B.《赫尔辛基宣言》C.《希波克拉底誓言》D.《大医精诚》E.《伤寒杂病论》西方最早的经典医德文献是
属于吡唑烷酮类的药物是
根据《信访条例》规定,下面关于信访程序规定的说法错误的是:()
施工单位的施工组织设计和技术措施应由()审查。
先前的思维活动所形成的解决问题的方法成为了解决当前问题的一种心理准备状态,这种准备状态称为_____。
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.本试卷由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分
若f(-x)=f(x)(-∞
在图形显示系统的类层次结构中,类Shape定义了“图形”所具有的公有方法:display(),并将其声明为抽象方法:类Line是Shape的子类。则下列说法中正确的是1._____。若类Line正确继承了Shape类,并定义了方法display(i
Peoplecouldeatmorecocoa-richproductssuchasdarkchocolatebutnotdrinkteaiftheywanttolowertheirbloodpressure,G
最新回复
(
0
)