首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设矩阵求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
admin
2016-01-11
56
问题
设矩阵
求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为3阶单位矩阵.
选项
答案
由于|A|=7≠0,所以矩阵A的任一特征值λ≠0. 设η是A的属于λ的一个特征向量,即Aη=λη,故η是A
一1
的属于[*]的特征向量. 又A
一1
=|A|A
一1
,故η是A
*
的属于[*]的特征向量. 由B=P
一1
A
*
P,有PBP
一1
=A
*
从而,[*]
解析
本题主要考查矩阵的特征值及特征向量的计算,并由A的特征值、特征向量计算与A有关的某些矩阵的特征值及特征向量.本题主要有两种解法,一是先讨论矩阵B与A的特征值、特征向量之间的关系,经计算A的特征值、特征向量而得到B+2E的特征值、特征向量;二是由A求A
*
,再求B及B+2E,从而算出B+2E的特征值、特征向量,后一方法由于要经过多次数字计算,中间稍有错误便前功尽弃.
转载请注明原文地址:https://kaotiyun.com/show/ie34777K
0
考研数学二
相关试题推荐
设A=,B=,C=,D=,那么与对角矩阵相似的矩阵是().
设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22-y32,A*是A的伴随矩阵,则二次型g(x1,x2,x3)-xTA*x的规范形为()
设α=(1,a,1)T(a>0)是A-1的特征向量,其中A=,则a=________.
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设,下列矩阵中与A既不相似也不合同的是()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
随机试题
OrganDonationandTransplantation1Organdonation(捐献)andtransplantation(移植)referstotheprocessbywhichorgansortissu
头颅摄影的常规体位是
急性化脓性牙髓炎慢性闭锁性牙髓炎
下列关于人本主义治疗技术中最重要的是
在生效判决执行过程中,下列哪些做法是正确的?
某露天煤矿由于未能发现早期预兆,突然发生边坡滑落,造成全矿生产中断,应按责任事故进行追究责任。()
给水与污水处理厂试运行内容不包括()。
游客金某等人接受甲旅行社提供的服务时,其合法权益受到损害,当金某等人联名向当地旅游行政管理部门投诉时,该甲旅行社已分立为乙、丙两个旅行社,对此,金某等人可以向()要求赔偿。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
TherewasonethingIfoundratherstrangeonmyfirstdayatMonk’sHouse.Thebathroomwasdirectlyabovethekitchenandw
最新回复
(
0
)