首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2016-09-12
70
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示. 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/iht4777K
0
考研数学二
相关试题推荐
设f(x)连续,证明∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx。
=________。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于________。
设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),则对任何c∈(0,1)________。
设(n=1,2,…)证明{xn}收敛,并求极限。
计算不定积分.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’x(x0,y0),f’y(x0,y0)存在是f(x,y)在该点连续的________。
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
随机试题
剪力墙的优缺点是什么?
下列关于消费者监督批评权的表述正确的是()
分段围堰导流法包括束窄河床导流和()。
下列关于公司对外投资和担保的说法,不符合《公司法》规定的是()。
社区是社会环境的主要构成要素之一,其对人类行为的影响是()。
如图,圆锥的地面半径为5cm,侧面积为65πcm2,若圆锥的母线与高的夹角为θ,则sinθ=_________.
第20届冬季奥运会于2006年2月在()举行,中国军团获得两枚金牌,与上届冬奥会持平。
研究者欲研究某城市居民环境保护的动机类型(A因素:短暂动机、长远动机)和环保行为(B因素:宣传、批评、治理)对所在社区环境质量的影响。研究者采用组间设计,每种处理方式下研究了10位成年居民,下面是尚未填写完毕的研究结果的方差分析表。请给出方差分析表中①②③
Arecentstudy,publishedinlastweek’sJournaloftheAmericanMedicalAssociation,offersapictureofhowriskyitistoget
Sheis______kindagiftthatallofusliketomakefriendswithher.
最新回复
(
0
)