首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2019-05-10
56
问题
设a
i
=[a
i1
,a
i2
,a
in
]
T
(i=l,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
,线性无关.已知β=[b
1
,b
2
,…,b
n
]
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设出k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0,要对此等式两边同时左乘β
T
恒等变形,证明k=0.再由α
1
,α
2
,…,α
r
线性无关,证明k
1
=k
2
=…=k
r
=0. 解一 因β是线性方程组AX=0的解,即Aβ=0,而A=[*],由Aβ=[*]β=0得 α
1
T
β=α
2
T
β=…=α
r
T
β=0,因而β
T
α
1
=β
T
α
2
=…=β
T
α
r
=0. 设 k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0. 左乘β
T
,利用β
T
α
i
=0(i=1,2,…,r)得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+kβ
T
β=kβ
T
β=0, 但β≠0,所以β
T
β=b
1
2
+b
2
2
+…+b
n
2
>0,于是k=0.代入式①得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0. 但α
1
,α
2
,…,α
r
线性无关,所以k
1
=k
2
=…=k
r
=0,故α
1
,α
2
,…,α
r
,β线性无关. 解二 反证法.若α
1
,α
2
,…,α
r
,β线性相关,则β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,于是β
T
β=k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
=0,从而β=0,这与β是非零解向量矛盾,故α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ijV4777K
0
考研数学二
相关试题推荐
证明:用二重积分证明
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
随机试题
在Word2010“打印”对话框中选定“______”,表示只打印光标所在的一页。
A.IgMB.IgGC.IgED.IgAE.IgD具有早期诊断意义的Ig是
两均数差别的检验常用
(2008年)机械零件的工作安全系数是()。
某实施监理的消防工程项目,在设备基础施工时,施工人员发现了有研究价值的古墓,监理机构及时采取措施并按有关程序处理了该事件。设备安装工程开始前,施工单位依据总进度计划的要求编制了如下图所示的设备安装双代号网络进度计划(时间单位:天),并得到了总监理
会计是从货币方面对企业、事业单位的经济活动进行连续、系统、全面的核算和监督。()
注册会计师在发现了某些账户的异常情况后,由于下列各种原因而未能作进一步的审查,以至于与该账户相关的财务报表项目中存在重大问题而未被发现。其中,最有可能被判定为欺诈的是( )。根据审计风险的概念,以下符合审计风险定义的是( )。
与短期借款仅核算借款本金不同,长期借款的借款利息也计入“长期借款”账户。()
通常所说的须弥座或金刚座指的是()。
关于政府职能的转变,正确的表述是()。
最新回复
(
0
)