首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2019-05-10
75
问题
设a
i
=[a
i1
,a
i2
,a
in
]
T
(i=l,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
,线性无关.已知β=[b
1
,b
2
,…,b
n
]
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设出k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0,要对此等式两边同时左乘β
T
恒等变形,证明k=0.再由α
1
,α
2
,…,α
r
线性无关,证明k
1
=k
2
=…=k
r
=0. 解一 因β是线性方程组AX=0的解,即Aβ=0,而A=[*],由Aβ=[*]β=0得 α
1
T
β=α
2
T
β=…=α
r
T
β=0,因而β
T
α
1
=β
T
α
2
=…=β
T
α
r
=0. 设 k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0. 左乘β
T
,利用β
T
α
i
=0(i=1,2,…,r)得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+kβ
T
β=kβ
T
β=0, 但β≠0,所以β
T
β=b
1
2
+b
2
2
+…+b
n
2
>0,于是k=0.代入式①得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0. 但α
1
,α
2
,…,α
r
线性无关,所以k
1
=k
2
=…=k
r
=0,故α
1
,α
2
,…,α
r
,β线性无关. 解二 反证法.若α
1
,α
2
,…,α
r
,β线性相关,则β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,于是β
T
β=k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
=0,从而β=0,这与β是非零解向量矛盾,故α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ijV4777K
0
考研数学二
相关试题推荐
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
随机试题
甲创作并出版的经典童话《大灰狼》超过著作财产权保护期后,乙将“大灰狼”文字及图形申请注册在“书籍”等商品类别上并获准注册。丙出版社随后未经甲和乙同意出版了甲的《大灰狼》童话,并使用了“大灰狼”文字及图形,但署名为另一著名歌星丁,丁对此并不知情。关于丙出版社
中华人民共和国国家标准《城镇土地估价规程》于2001年11月12日发布,自2002年1月1日起实施。()
工程咨询逻辑框架矩阵的核心是()。
在建设工程进度控制工作中,监理工程师所采取的合同措施是指()。
()负责日常监督商业银行的合规风险管理。
货币政策最终目标的表达为()。
下列选项中关于基数效用论和序数效用论说法正确的是()。
某位刚参加工作的年轻女教师比较时尚,喜欢穿吊带衫,佩戴夸张的耳环、项链等饰物,还染指甲和头发。该校校长找她沟通,提醒她违反了()的职业道德规范,并希望她今后在学校要衣着得体。
以下对于清初恢复发展经济的措施论述正确的一项是()。①停止圈地②“更名田”③奖励垦荒④整顿赋役制度⑤废除匠籍
七月流血事件以后俄国国内政治形势总的特点是()。
最新回复
(
0
)