首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量.
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量.
admin
2013-09-15
124
问题
设向量a=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件a
T
β=0,记n阶矩阵A=aβ
T
.求:
(Ⅰ)A
2
;
(Ⅱ)矩阵A的特征值和特征向量.
选项
答案
(Ⅰ)由题设,a,β都是非零向量,且a
T
=o,则β
T
a=0,则A
2
=(aβ
T
)(aβ
T
)=(β
T
a)aβ
T
=O,即A
2
为零矩阵. (Ⅱ)由特征值及特征向量的定义,设λ为A的特征值,x为其相应的特征向量, 则Ax=λx,x≠0,由前述知A
2
=D,从而0=AAx=λAx=λ
2
x,即λ=0,所以A的所有特征值都为0. 又A=[*],不失一般性,可设a
1
≠0,b
1
≠0, 则由初等行变换可化A为[*],由此Ax=0的基础解系为 [*] 所以A的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中后。k
1
,k
2
,…,k
n-1
是不全为0的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/in34777K
0
考研数学二
相关试题推荐
(2017年)=______.
设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则__________.
[2009年]计算不定积分
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
[2008年]如图1.3.3.2所示,曲线段方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分等于().
(01年)设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组【】
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
当x→0时,(~1)In(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比高阶的无穷小,则k的取值范围是()
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
随机试题
设un是正项级数,且有,则当ρ()1时级数发散.
继发性闭经是指月经停止()
非晶硒FPD的优点不包括
治疗湿热型经间期出血,首选方为
微分方程xy’-y=x2e2x的通解y等于()。
预制构件应按设计位置起吊,曲梁宜采用()吊装,吊绳与预制构件平面的交角不应小于()。
某机床厂因订单减少,开工不足,近5年来第一次发生亏损。王厂长于是考虑精简人员,为此他来到人力资源部听取意见,素来以铁面无私著称的小李刚从财务部轮岗上任,他从财务部成本的角度认为裁员一定能大幅度降低人工成本,并主张以绩效标准为依据,裁减绩效差的员工或者实施减
制订管理计划一般应遵循的工作步骤有()
关系模式规范化的最起码的要求是达到第一范式,即满足
We’dlike______(预订一张餐桌)fivefordinnerthisevening.
最新回复
(
0
)