首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量.
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量.
admin
2013-09-15
100
问题
设向量a=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件a
T
β=0,记n阶矩阵A=aβ
T
.求:
(Ⅰ)A
2
;
(Ⅱ)矩阵A的特征值和特征向量.
选项
答案
(Ⅰ)由题设,a,β都是非零向量,且a
T
=o,则β
T
a=0,则A
2
=(aβ
T
)(aβ
T
)=(β
T
a)aβ
T
=O,即A
2
为零矩阵. (Ⅱ)由特征值及特征向量的定义,设λ为A的特征值,x为其相应的特征向量, 则Ax=λx,x≠0,由前述知A
2
=D,从而0=AAx=λAx=λ
2
x,即λ=0,所以A的所有特征值都为0. 又A=[*],不失一般性,可设a
1
≠0,b
1
≠0, 则由初等行变换可化A为[*],由此Ax=0的基础解系为 [*] 所以A的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中后。k
1
,k
2
,…,k
n-1
是不全为0的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/in34777K
0
考研数学二
相关试题推荐
二次积分=__________.
(2013年)=_______。
(08年)设函数f连续,若F(u,v)=,其中区域Duv为图中阴影部分,则=【】
(2017年)若函数f(x)=在x=0处连续,则()
设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
(02年)(1)验证函数y(χ)=1++…(-∞<χ<+∞)满足微分方程y〞+y′+y=eχ(2)利用(1)的结果求幂级数的和函数.
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
[2010年]设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是().
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设函数f(u)具有连续导数,且z=f(excosy)满足若f(0)=0,求f(u)的表达式.
随机试题
已知某建筑工程定额工期为25个月,合同工期为20个月,直接工程费中人工费合计为150万元,平均日工资单价为30元,每工日夜间施工费开支为50元,则该项目夜间施工增加费为()万元。
甲有限责任公司(以下简称甲公司)为增值税一般纳税人,适用的增值税税率为13%,产品售价均为不合税售价,产品销售成本按经济业务逐项结转。2021年1月1日所有者权益总额为5600万元,其中实收资本3000万元,资本公积1000万元,盈余公积600万元,
关于诉讼时效中断的表述,下列说法正确的是()。
某游客因自己的无理要求得不到满足而提出中途退团,经旅行社同意后,导游应告知其未享受的综合服务费()。
在“首届京剧旦角最佳演员”的评选中,梅兰芳、程砚秋、尚小云、()当选,被誉为京剧“四大名旦”。
WhenMaryMoorebeganherhighschoolin1951,hermothertoldher,"Besureandtakeatypingcourse,sowhenthisshowbusines
设四阶矩阵B满足(A*)-1BA-1=2AB+E,且A=,求矩阵B.
运算符重载时不需要保持的性质是()。
WhatisremarkableabouttheblackwalnuttreeoutsideBrettHall?
WhilehewasinBeijing,hespentallhistime________someimportantmuseumsandbuildings.
最新回复
(
0
)