首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x=x(t)由sint—∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
设x=x(t)由sint—∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
admin
2019-06-28
41
问题
设x=x(t)由sint—∫
t
x(t)
φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
选项
答案
t=0时,x(0)=0. sint—∫
t
x(t)
φ(u)du=0两边关于t求导得cost一φ[x(t)]x’(t)+φ(t)=0,取t=0得x’(0)=2; 两边再关于t求导可得一sint一φ’[x(t)][x’(t)]
2
一φ[x(t)]x"(t)+φ’(t)=0, 取t=0得x”(0)=一3.
解析
转载请注明原文地址:https://kaotiyun.com/show/ipV4777K
0
考研数学二
相关试题推荐
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P-1AP=A。
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求求Bx=0的通解。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。求正交变换x=Qy,把f(x1,x2,x3)化为标准形;
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵尸使得P-1AP=A。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求dy/dx|x=0,d2y/dx2|x=0
设z=z(χ,y),由方程F()=0确定(F为可微函数),求
比较下列积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)||x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
随机试题
正弦交流电的三要素是幅值、()和初相位。
评价手段和方法多次使用所得结果应有较高的一致性,是指()
超声雾化吸入法,雾化罐内药液应稀释至
抗链球菌O(ASO)的正常值为
他汀类药物不用于
A、木B、火C、土D、金E、水筋在五行中属
建设项目竣工决算应包括()全过程的全部实际支出费用。
与分销需求计划(DRP)相比,DRPⅡ在内容上增加了()。
某公司采用期望现金流量法估计未来现金流量,2017年A设备在不同的经营情况下产生的现金流量分别为:该公司经营好的可能性是40%,产生的现金流量为2000万元;经营一般的可能性是50%,产生的现金流量是1600万元,经营差的可能性是10%,产生的现金流量是8
通过诊断教学方案及教学活动中存在的问题,为教学活动提供反馈信息的教学评价称为总结性教学评价。()
最新回复
(
0
)