首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x=x(t)由sint—∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
设x=x(t)由sint—∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
admin
2019-06-28
59
问题
设x=x(t)由sint—∫
t
x(t)
φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
选项
答案
t=0时,x(0)=0. sint—∫
t
x(t)
φ(u)du=0两边关于t求导得cost一φ[x(t)]x’(t)+φ(t)=0,取t=0得x’(0)=2; 两边再关于t求导可得一sint一φ’[x(t)][x’(t)]
2
一φ[x(t)]x"(t)+φ’(t)=0, 取t=0得x”(0)=一3.
解析
转载请注明原文地址:https://kaotiyun.com/show/ipV4777K
0
考研数学二
相关试题推荐
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P-1AP=A。
设矩阵A=的一个特征值为λ1=一3,且A的三个特征值之积为一12,则a=_________;b=________;A的其他特征值为_________。
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
微分方程(y2+1)dx=y(y一2x)dy的通解是________.
曲线y=的斜渐近线为_______.
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明:(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:f(x);
随机试题
治疗胃病取内关、足三里这属于哪种配穴法
患者,农村女性,52岁,看到锋利的刀具就会感到恐惧,脑海中总是呈现锋利物品的场景,她为此感到痛苦而不愿进厨房,但认为自己应该担当起主妇的责任,应该进厨房做饭,这种情况属于
A、苯海索B、司来吉兰C、左旋多巴D、金刚烷胺E、恩托卡朋避免高蛋白摄入的药物是()。
工程测量中较多使用DS3型微倾式普通水准仪,数字3表示该仪器精度,即每公里往返测量高差中数的偶然中误差为()mm。
根据下述情形,完成以下各题 甲的发明专利权授权公告时的权利要求书如下: “1.一种豆浆机,……。2.根据权利要求1所述的豆浆机,……。3.根据权利要求2所述的豆浆机,……。4.根据权利要求1所述的豆浆机,……。”乙于2008年对甲的专利权提出无效宣告请
消防工作的内容主要有()。
支移与折变
translationese
开发大型软件时,产生困难的根本原因是
Theotherdayanacquaintanceofmine,asociableandcharmingman,toldmehehadfoundhimself【C1】______aloneinNewYorkfora
最新回复
(
0
)